#はじめに
OpenFOAMのユーザーマニュアルは網羅的ではない。というよりも入門書に相当するドキュメントだと思うし、最大のドキュメントはソースコード自身だったりする。
読んでいるとたまに使い方や設定項目で載っていないものがあったりするので、その探し方の一方法についてのメモ。
#例:foamDataToFluent
OpenFOAMの結果をFluentのGUI上で見れるように変換するユーティリティ。
ユーザーマニュアルには下の表が乗っている。
(https://cfd.direct/openfoam/user-guide/v3-fluent/#x32-1970006.3)
Fluent name | Unit number | Common OpenFOAM name |
---|---|---|
PRESSURE | 1 | p |
MOMENTUM | 2 | U |
TEMPERATURE | 3 | T |
ENTHALPY | 4 | h |
TKE | 5 | k |
TED | 6 | epsilon |
SPECIES | 7 | — |
G | 8 | — |
XF_RF_DATA_VOF | 150 | gamma |
TOTAL_PRESSURE | 192 | — |
TOTAL_TEMPERATURE | 193 | — |
意外と少ないなと思った人はいると思う。実際には記載の項目以外も設定できるのでそのリストを探しに行く。
#対応表の場所
OpenFOAM Advent Calendar 2017 2日目記事の方法でfoamDataToFluentのフォルダを探しに行く。今回はユーティリティなので、$FOAM_UTILITIESを探す。
$ find $FOAM_UTILITIES | grep "foamDataToFluent"
/home/mmer547/OpenFOAM/OpenFOAM-v1706/applications/utilities/postProcessing/dataConversion/foamDataToFluent
/home/mmer547/OpenFOAM/OpenFOAM-v1706/applications/utilities/postProcessing/dataConversion/foamDataToFluent/Make
/home/mmer547/OpenFOAM/OpenFOAM-v1706/applications/utilities/postProcessing/dataConversion/foamDataToFluent/Make/files
/home/mmer547/OpenFOAM/OpenFOAM-v1706/applications/utilities/postProcessing/dataConversion/foamDataToFluent/Make/options
/home/mmer547/OpenFOAM/OpenFOAM-v1706/applications/utilities/postProcessing/dataConversion/foamDataToFluent/fluentUnitNumbers.txt
/home/mmer547/OpenFOAM/OpenFOAM-v1706/applications/utilities/postProcessing/dataConversion/foamDataToFluent/foamDataToFluent.C
/home/mmer547/OpenFOAM/OpenFOAM-v1706/applications/utilities/postProcessing/dataConversion/foamDataToFluent/foamDataToFluentDict
/home/mmer547/OpenFOAM/OpenFOAM-v1706/applications/utilities/postProcessing/dataConversion/foamDataToFluent/writeFluentFields.H
/home/mmer547/OpenFOAM/OpenFOAM-v1706/applications/utilities/postProcessing/dataConversion/foamDataToFluent/writeFluentScalarField.C
/home/mmer547/OpenFOAM/OpenFOAM-v1706/applications/utilities/postProcessing/dataConversion/foamDataToFluent/writeFluentVectorField.C
で、見つかったデータを眺めると、fluentUnitNumbers.txtなるものがあることが分かる。開いてみるとFluentのUnit Numberの対比表になっている。
enum {
XF_RF_DATA_NULL=0,
XF_RF_DATA_NULL_M1=0,
XF_RF_DATA_NULL_M2=0,
XF_RF_DATA_NULL_MEAN=0,
XF_RF_DATA_NULL_RMS=0,
XF_RF_DATA_PRESSURE=1,
XF_RF_DATA_MOMENTUM=2,
XF_RF_DATA_TEMPERATURE=3,
XF_RF_DATA_ENTHALPY=4,
XF_RF_DATA_TKE=5,
XF_RF_DATA_TED=6,
XF_RF_DATA_SPECIES=7,
XF_RF_DATA_G=8,
XF_RF_DATA_G_M1=0, /* never stored but symbol is required */
XF_RF_DATA_G_M2=0,
XF_RF_DATA_WSWIRL=9,
XF_RF_DATA_DPMS_MASS=10,
XF_RF_DATA_DPMS_MOM=11,
XF_RF_DATA_DPMS_ENERGY=12,
XF_RF_DATA_DPMS_SPECIES=13,
XF_RF_DATA_DVOLUME_DT=14,
XF_RF_DATA_BODY_FORCES=15,
XF_RF_DATA_FMEAN=16,
XF_RF_DATA_FVAR=17,
XF_RF_DATA_MASS_FLUX=18,
XF_RF_DATA_WALL_SHEAR=19,
XF_RF_DATA_BOUNDARY_HEAT_FLUX=20,
XF_RF_DATA_BOUNDARY_RAD_HEAT_FLUX=21,
XF_RF_DATA_OLD_PRESSURE=22,
XF_RF_DATA_POLLUT=23,
XF_RF_DATA_DPMS_P1_S=24,
XF_RF_DATA_DPMS_P1_AP=25,
XF_RF_DATA_WALL_GAS_TEMPERATURE=26,
XF_RF_DATA_DPMS_P1_DIFF=27,
XF_RF_DATA_DR_SURF=28,
/* conserved variables at n-1 and n-2 time levels (rampant) */
XF_RF_DATA_W_M1=29,
XF_RF_DATA_W_M2=30,
XF_RF_DATA_DPMS_BURNOUT=31,
XF_RF_DATA_DPMS_CONCENTRATION=32,
XF_RF_DATA_PDF_MW=33,
XF_RF_DATA_DPMS_WSWIRL=34,
XF_RF_DATA_YPLUS=35,
XF_RF_DATA_YPLUS_UTAU=36,
XF_RF_DATA_WALL_SHEAR_SWIRL=37,
XF_RF_DATA_WALL_T_INNER=38,
XF_RF_DATA_POLLUT0=39,
XF_RF_DATA_POLLUT1=40,
XF_RF_DATA_WALL_G_INNER=41,
XF_RF_DATA_PREMIXC=42,
XF_RF_DATA_PREMIXC_T=43,
XF_RF_DATA_PREMIXC_RATE=44,
XF_RF_DATA_POLLUT2=45,
XF_RF_DATA_POLLUT3=46,
XF_RF_DATA_MASS_FLUX_M1=47,
XF_RF_DATA_MASS_FLUX_M2=48,
XF_RF_DATA_GRID_FLUX=49,
XF_RF_DATA_DO_I=50,
XF_RF_DATA_DO_RECON_I=51,
XF_RF_DATA_DO_ENERGY_SOURCE=52,
XF_RF_DATA_DO_IRRAD=53,
XF_RF_DATA_DO_QMINUS=54,
XF_RF_DATA_DO_IRRAD_OLD=55,
XF_RF_DATA_DO_IWX=56,
XF_RF_DATA_DO_IWY=57,
XF_RF_DATA_DO_IWZ=58,
XF_RF_DATA_MACH=59,
XF_RF_DATA_SLIP_U=60,
XF_RF_DATA_SLIP_V=61,
XF_RF_DATA_SLIP_W=62,
XF_RF_DATA_SDR=63, /* omega in the k-w model */
XF_RF_DATA_SDR_M1=64,
XF_RF_DATA_SDR_M2=65,
XF_RF_DATA_POLLUT4=66,
XF_RF_DATA_GRANULAR_TEMPERATURE = 67,
XF_RF_DATA_GRANULAR_TEMPERATURE_M1 = 68,
XF_RF_DATA_GRANULAR_TEMPERATURE_M2 = 69,
XF_RF_DATA_VFLUX=70,
XF_RF_DATA_VFLUX_M1=80,
XF_RF_DATA_VFLUX_M2=90,
XF_RF_DATA_DO_QTRANS=92,
XF_RF_DATA_DO_QREFL=93,
XF_RF_DATA_DO_QABS=94,
XF_RF_DATA_DENSITY=101,
XF_RF_DATA_MU_LAM=102,
XF_RF_DATA_MU_TURB=103,
XF_RF_DATA_CP=104,
XF_RF_DATA_KTC=105,
XF_RF_DATA_VGS_DTRM=106,
XF_RF_DATA_VGF_DTRM=107,
XF_RF_DATA_RSTRESS=108, /* V4 reynolds stress model */
XF_RF_DATA_THREAD_RAD_FLUX=109,
/* mass absorption term for absorbing porous media model */
XF_RF_DATA_SPE_Q=110,
XF_RF_DATA_X_VELOCITY=111,
XF_RF_DATA_Y_VELOCITY=112,
XF_RF_DATA_Z_VELOCITY=113,
XF_RF_DATA_WALL_VELOCITY=114,
XF_RF_DATA_PRESSURE_M1=0, /* never stored but symbol is required */
XF_RF_DATA_X_VELOCITY_M1=115,
XF_RF_DATA_Y_VELOCITY_M1=116,
XF_RF_DATA_Z_VELOCITY_M1=117,
XF_RF_DATA_PHASE_MASS=118, /* cavitation mass source */
XF_RF_DATA_TEMPERATURE_M1=0, /* never stored but symbol is required
*/
XF_RF_DATA_TKE_M1=119,
XF_RF_DATA_TED_M1=120,
XF_RF_DATA_PRESSURE_M2=0, /* never stored but symbol is required */
XF_RF_DATA_X_VELOCITY_M2=122,
XF_RF_DATA_Y_VELOCITY_M2=123,
XF_RF_DATA_Z_VELOCITY_M2=124,
XF_RF_DATA_TEMPERATURE_M2=0, /* never stored but symbol is required */
XF_RF_DATA_TKE_M2=126,
XF_RF_DATA_TED_M2=127,
XF_RF_DATA_RUU=128, /* V5 reynolds stress model */
XF_RF_DATA_RVV=129, /* V5 reynolds stress model */
XF_RF_DATA_RWW=130, /* V5 reynolds stress model */
XF_RF_DATA_RUV=131, /* V5 reynolds stress model */
XF_RF_DATA_RVW=132, /* V5 reynolds stress model */
XF_RF_DATA_RUW=133, /* V5 reynolds stress model */
XF_RF_DATA_DPMS_EROSION=134,
XF_RF_DATA_DPMS_ACCRETION=135,
XF_RF_DATA_FMEAN2=136,
XF_RF_DATA_FVAR2=137,
XF_RF_DATA_ENTHALPY_M1=138,
XF_RF_DATA_ENTHALPY_M2=139,
XF_RF_DATA_FMEAN_M1=140,
XF_RF_DATA_FMEAN_M2=141,
XF_RF_DATA_FVAR_M1=142,
XF_RF_DATA_FVAR_M2=143,
XF_RF_DATA_FMEAN2_M1=144,
XF_RF_DATA_FMEAN2_M2=145,
XF_RF_DATA_FVAR2_M1=146,
XF_RF_DATA_FVAR2_M2=147,
XF_RF_DATA_PREMIXC_M1=148,
XF_RF_DATA_PREMIXC_M2=149,
/*vof 1,2,3,4 kept for v5 compatibility */
XF_RF_DATA_VOF = 150,
XF_RF_DATA_VOF_1 = 151,
XF_RF_DATA_VOF_2 = 152,
XF_RF_DATA_VOF_3 = 153,
XF_RF_DATA_VOF_4 = 154,
XF_RF_DATA_VOF_M1 = 160 ,
XF_RF_DATA_VOF_1_M1 = 161 ,
XF_RF_DATA_VOF_2_M1 = 162 ,
XF_RF_DATA_VOF_3_M1 = 163 ,
XF_RF_DATA_VOF_4_M1 = 164 ,
XF_RF_DATA_VOF_M2 = 170 ,
XF_RF_DATA_VOF_1_M2 = 171 ,
XF_RF_DATA_VOF_2_M2 = 172 ,
XF_RF_DATA_VOF_3_M2 = 173 ,
XF_RF_DATA_VOF_4_M2 = 174 ,
/* dynamic mesh */
XF_RF_DATA_VOLUME_M2 = 180 ,
XF_RF_DATA_WALL_GRID_VELOCITY = 181 ,
XF_RF_DATA_SV_T_AUX = 190 , /* auxilliary temperature
for particles */
XF_RF_DATA_SV_T_AP_AUX = 191 , /* auxilliary ap
coefficient for particles */
XF_RF_DATA_TOTAL_PRESSURE=192,
XF_RF_DATA_TOTAL_TEMPERATURE=193,
XF_RF_DATA_NRBC_DC=194, /* change in char. var for
nrbc*/
EXPAND_50_EQUAL(XF_RF_DATA_Y_, 200), /* species */
EXPAND_50(XF_RF_DATA_Y_,_M1=, 250), /* species at fist time
level */
EXPAND_50(XF_RF_DATA_Y_,_M2=, 300), /* species at second time
level */
EXPAND_50_EQUAL(XF_RF_DATA_DR_SURF_, 350), /* surface deposition rate
*/
/* Please start next XF_RF_DATA_ subsection ids at 400 or above
* to allow room for the addition of more species ids if needed */
XF_RF_DATA_PRESSURE_MEAN=400,
XF_RF_DATA_PRESSURE_RMS=401,
XF_RF_DATA_X_VELOCITY_MEAN=402,
XF_RF_DATA_X_VELOCITY_RMS=403,
XF_RF_DATA_Y_VELOCITY_MEAN=404,
XF_RF_DATA_Y_VELOCITY_RMS=405,
XF_RF_DATA_Z_VELOCITY_MEAN=406,
XF_RF_DATA_Z_VELOCITY_RMS=407,
XF_RF_DATA_TEMPERATURE_MEAN=408,
XF_RF_DATA_TEMPERATURE_RMS=409,
XF_RF_DATA_VOF_MEAN=410,
XF_RF_DATA_VOF_RMS=411,
EXPAND_50_EQUAL(XF_RF_DATA_DPMS_Y_,450),
/* Don't add section ids here unless you need a large contiguous
chunk.
* Use id's 40-100 first! */
XF_RF_DATA_NUT=500,
XF_RF_DATA_NUT_M1=501,
XF_RF_DATA_NUT_M2=502,
XF_RF_DATA_RUU_M1=503,
XF_RF_DATA_RVV_M1=504,
XF_RF_DATA_RWW_M1=505,
XF_RF_DATA_RUV_M1=506,
XF_RF_DATA_RVW_M1=507,
XF_RF_DATA_RUW_M1=508,
XF_RF_DATA_RUU_M2=509,
XF_RF_DATA_RVV_M2=510,
XF_RF_DATA_RWW_M2=511,
XF_RF_DATA_RUV_M2=512,
XF_RF_DATA_RVW_M2=513,
XF_RF_DATA_RUW_M2=514,
XF_RF_DATA_ENERGY_M1=515,
XF_RF_DATA_ENERGY_M2=516,
XF_RF_DATA_DENSITY_M1=517,
XF_RF_DATA_DENSITY_M2=518,
XF_RF_DATA_DPMS_PDF_1=519,
XF_RF_DATA_DPMS_PDF_2=520,
/* shell: using 530->539 */
XF_RF_DATA_SHELL_CELL_T=530,
XF_RF_DATA_SHELL_FACE_T=531,
XF_RF_DATA_DELH=600, /* obsolete for >= v6.0*/
XF_RF_DATA_DPMS_MOM_AP=601,
XF_RF_DATA_DPMS_WSWIRL_AP=602,
XF_RF_DATA_X_PULL=603,
XF_RF_DATA_Y_PULL=604,
XF_RF_DATA_Z_PULL=605,
XF_RF_DATA_LIQF=606,
/* pdf transport */
XF_RF_DATA_PDFT_QBAR=610,
XF_RF_DATA_PDFT_PHI=611,
XF_RF_DATA_PDFT_Q_TA=612,
XF_RF_DATA_PDFT_SVOL_TA=613,
XF_RF_DATA_PDFT_MASS_TA=614,
EXPAND_50_EQUAL(XF_RF_DATA_UDS_,700), /* user defined scalar */
EXPAND_50(XF_RF_DATA_UDS_,_M1=, 750), /* user defined scalar
* at fist time level */
EXPAND_50(XF_RF_DATA_UDS_,_M2=, 800), /* user defined scalar
* at second time level */
XF_RF_DATA_GRANULAR_PRESSURE=910,
XF_RF_DATA_GRANULAR_PRESSURE_M1=0,/* never stored but symbol is
required */
XF_RF_DATA_GRANULAR_PRESSURE_M2=0,/* never stored but symbol is
required */
XF_RF_DATA_UDM_I=970,
/* Don't add section ids here unless you need a large contiguous
chunk.
* Use id's 40-100 and 128-200 first! */
EXPAND_50(XF_RF_DATA_Y_,_MEAN=, 1000), /* time average species */
EXPAND_50(XF_RF_DATA_Y_,_RMS=, 1050), /* RMS species */
EXPAND_50_EQUAL(XF_RF_DATA_Y_EDC_, 1100), /* EDC species */
EXPAND_50_EQUAL(XF_RF_DATA_DPMS_SURFACE_SPECIES_, 1150) /* particle
surface species */
};
#まとめ
OpenFOAMのユーザーマニュアルはリファレンスではないので、すべてがすべて網羅され、記述されているわけではない。
ソースコードの場所なども見る必要がある。
乱流モデルなどは参考文献や処理の考え方が書いてあったりするので、ネットで情報を探すのもいいが、ソースコードを見に行く癖はつけておきたいところ。