📚 関連書籍
『ゼロから触ってわかった!MCPビギナーズガイド』 ― AIエージェント時代の次世代プロトコル入門 アーキテクチャ・ガバナンス・実装―
MCPというプロトコルは、単なる技術トレンドではなく
「AIとシステムの関係性」そのものを変える可能性を秘めています。
SaaS、AIエージェント、ガバナンス、アーキテクチャ。
その交差点を一度、立ち止まって整理した一冊です。
👉 https://amzn.to/3LcAjgg
『ゼロから触ってわかった!Salesforce AgentForce + Data Cloud 非公式ガイド』
Salesforceの最新AI基盤 AgentForce と Data Cloud を、実際の操作を通じて理解できる解説書。
エージェント設計、トピック/アクション構築、プロンプトビルダー、RAG(検索拡張生成)など、
2025年以降のAI×CRMのハンズオン知識をまとめた一冊です。
SalesforceのAgentforceとの接続モデル 🏢🤖
企業システムにAIエージェントを組み込む話になると、
必ず出てくるのが
「既存SaaSとどう接続するのか?」
という問いです。
ここでは、
Salesforce が提供する
Agentforce を例に、
MCPがどのように 企業システムとの健全な接続モデル を作るのかを整理します。
ポイントは単純です。
AIを賢くする話ではなく、
AIを“企業システムの一部”として扱う話 です。
Agentforceが前提としている世界観 🌐
Agentforceは、
Salesforce上のデータや業務フローを前提に、
AIエージェントを動かすための仕組みです。
- CRMデータ
- 権限モデル
- 業務プロセス
- 監査・ログ
これらが最初から 強く統制された世界 として存在しています。
重要なのは、
Agentforceが「自由なAI」を目指していない点です。
- 何でもできるAIではない
- Salesforceが許可した範囲で動くAI
つまり、
最初から境界と責任が明確 なのです。
この思想は、
MCPが目指している世界と非常に近いものがあります。
MCP視点で見るAgentforceの位置づけ 🧠📐
MCPの視点で整理すると、
Agentforceは Hostそのもの ではありません。
むしろ、
- Agentforce:業務特化型のHost実装
- MCP Client:境界と接続を担う層
- MCP Server:外部システムやデータ基盤
という分業が自然です。
Agentforceは、
- 業務文脈を理解し
- 判断を行い
- 次の行為を選択する
非常に「Host的」な振る舞いをします。
しかし、
- Salesforce外のデータ
- 他SaaS
- データ基盤
すべてに直接触らせるべきではありません。
ここでMCPが
安全な外部接続のレイヤー
として効いてきます。
接続モデルの基本構造 🔌🏗️
Agentforce × MCP の基本構造は、
次のように整理できます。
- Agentforce:
- 業務判断を行う
- Salesforce内の行為を選択
- MCP Client:
- Agentforceの判断を構造化
- 許可された接続だけを中継
- MCP Server:
- 外部データ・処理を提供
- 実行責任を持つ
重要なのは、
Agentforceが直接外部APIを叩かない
という点です。
- どのデータを見たか
- なぜその処理を呼んだか
- 実際に何が実行されたか
これをすべて
説明可能な形で分離 できます。
これは、
企業システムにAIを入れるうえで
極めて重要な条件です。
なぜMCPを挟むのか 🤔
「Agentforceから直接外部連携すればよい」
と思うかもしれません。
しかし、それをやると次の問題が起きます。
- Salesforce外の権限管理が曖昧になる
- 監査ログが分断される
- 接続先変更の影響がAgentforceに及ぶ
MCPを挟むことで、
- 外部接続はすべてMCP Serverに集約
- Agentforceは業務判断に集中
- セキュリティレビューの範囲が明確
になります。
つまり、
Agentforceを“賢くしすぎない”ための仕組み
がMCPです 🔒
企業システム視点でのメリット 🏢✨
企業側から見ると、
この接続モデルには大きなメリットがあります。
- Salesforceのガバナンスを壊さない
- 外部システムの責任範囲が明確
- AI導入の影響範囲を限定できる
AIを導入するたびに、
- セキュリティレビューが破綻する
- 誰が責任を持つか分からなくなる
こうした事態を防げます。
MCPは、
AI導入を“特別対応”にしないための仕組み
とも言えます。
まとめると 📝
- Agentforceは業務特化型のAIエージェント基盤
- MCPは外部接続と責任を分離するためのレイヤー
- 両者は競合せず、補完関係にある
- AIを企業システムに組み込むための現実解
- 「賢さ」より「境界設計」が重要
📚 関連書籍
Databricks/n8n/Salesforce/AI基盤 を体系的に学べる「ゼロから触ってわかった!」シリーズをまとめました。
『ゼロから触ってわかった!スペック駆動開発入門 ― SaaS is dead?AI時代のソフトウェア設計論』
本書は、近年現場や技術コミュニティで注目を集め始めた**スペック駆動開発(Spec Driven Development:SDD)**を軸に、
AI時代のソフトウェア設計がどこへ向かおうとしているのかを解き明かします。
なぜ今「コード」でも「GUI設定」でも足りなくなってきたのか。
なぜ業務の意図や判断を、実装の外に出す必要があるのか。
前半では思想や背景を丁寧に整理し、後半ではスペック・実装・実行の三層モデルをサンプルコードとともに具体化します。
データメッシュ
『ゼロから触ってわかった データメッシュ入門 ― 思想・型・組織構造から考えるデータメッシュ』
「Data Mesh を導入すべきかどうか」を断言する本ではありません。
また、「この形が正解だ」と教える本でもありません。
自分たちにとって、どこまで分散し、何を共有し、どこに責任を置くのか。
その判断をするための思考の土台を整理する一冊です。
データクリーンルーム
ゼロから触ってわかった データクリーンルーム実践入門
~ Lakehouse時代のクリーンルームを、思想・設計・マネタイズで読み解く ~
データはあるのに、渡せない。
それでも一緒に分析したい——そんな現場の悩みから、本書は始まります。
データクリーンルームを「難しい技術」ではなく、現実の業務でどう使い、どう続けるかという視点で整理しました。
非ITのビジネスパーソンにも読める、実践的な一冊です。
MCP
『ゼロから触ってわかった!MCPビギナーズガイド』 ― AIエージェント時代の次世代プロトコル入門 アーキテクチャ・ガバナンス・実装―
MCPというプロトコルは、単なる技術トレンドではなく
「AIとシステムの関係性」そのものを変える可能性を秘めています。
SaaS、AIエージェント、ガバナンス、アーキテクチャ。
その交差点を一度、立ち止まって整理した一冊です。
👉 https://amzn.to/3LcAjgg
Snowflake
ゼロから触ってわかった!Snowflake非公式ガイド ― 基礎から理解するアーキテクチャとCortexによる次世代AI基盤
「結局、DatabricksとSnowflakeは何が違うの?」
一見シンプルですが、機能表を比べるだけでは見えてこない深い問いです。 本書ではこの疑問を軸に、Snowflakeの思想・アーキテクチャ・設計思想を紐解いていきます。「違い」を知ることは、すなわち「現代のデータ基盤の本質」を知ることだからです。
初めてSnowflakeに触れる方には「最初の一冊」として。 なんとなく使っているけれどモヤモヤしている方には「頭の中を整理する一冊」として。 AI時代のエンジニアを目指すための、確かな燃料となる一冊です。
『ゼロから触ってわかった! Snowflake × Databricksでつくる次世代データ基盤 - 比較・共存・連携 非公式ガイド』
SnowflakeとDatabricks――二つのクラウドデータ基盤は、これまで「どちらを選ぶか」で語られることが多くありました。
しかし、実際の現場では「どう共存させるか」「どう連携させるか」が、より重要なテーマになりつつあります。
本書は、両プラットフォームをゼロから触り、構築・運用してきた実体験をもとに、比較・共存・連携のリアルを丁寧に解説する“非公式ガイド”です。
Databricks
『Databricks──ゼロから触ってわかった!Databricks非公式ガイド』
クラウド時代の分析基盤を “体験的” に学べるベストセラー入門書。
Databricksの操作、SQL/DataFrame、Delta Lakeの基本、ノートブック操作などを
初心者でも迷わず進められる構成で解説しています。
https://amzn.to/4pzlCCT
『ゼロから触ってわかった!Azure × Databricksでつくる次世代データ基盤 非公式ガイド ―』
クラウドでデータ基盤を作ろうとすると、Azure・Storage・ネットワーク・権限・セキュリティ…そこに Databricks が加わった瞬間、一気に難易度が跳ね上がります。
「結局どこから理解すればいいの?」
「Private Link むずかしすぎない?」
「Unity Catalog って実務ではどう扱うの?」
——そんな “最初のつまづき” を丁寧にほどいていくのが本書です。
👉 https://amzn.to/4ocWcJI
「ゼロから触ってわかった!Databricks × Airbyte」
クラウド時代のデータ基盤を“なぜ難しいのか”から丁寧にほどくガイドが完成しました。
Ingestion / LakeFlow / DLT / CDC をやさしく体系化し、
Airbyte × Databricks の真価を引き出す設計思想まで詰め込んだ一冊です。
『Databricks──ゼロから触ってわかった!DatabricksとConfluent(Kafka)連携!非公式ガイド』
Kafkaによるストリーム処理とDatabricksを統合し、リアルタイム分析基盤を構築するハンズオン形式の一冊。
イベント駆動アーキテクチャ、リアルタイムETL、Delta Live Tables連携など、
モダンなデータ基盤の必須スキルがまとめられています。
『Databricks──ゼロから触ってわかった!AI・機械学習エンジニア基礎 非公式ガイド』
Databricksでの プロンプト設計・RAG構築・モデル管理・ガバナンス を扱うAIエンジニアの入門決定版。
生成AIとデータエンジニアリングの橋渡しに必要な“実務の型”を体系化しています。
資格本ではなく、実務基盤としてAIを運用する力 を育てる内容です。
『Databricks認定データエンジニアプロフェッショナル 試験レベル ― 1日3分!気になったところから読めるデータブリックス!魂の100本ノック!』
Databricksを業務で触っている。なのに——サンプル問題を解いた瞬間、手が止まる。
「使ってはいるけど、設計の“理由”までは腹落ちしていない」…その違和感から、この本は生まれました。
本書は、Databricks認定データエンジニア・プロフェッショナル相当の論点を、100個のユースケースに分解し、**“2択の検討”→“解説コラム”→“結論”**でテンポよく叩き込む「魂の100本ノック」です。
暗記ではなく、現場で遭遇する判断ポイント(取り込み・変換・品質・共有・監視・性能/コスト・セキュリティ・ガバナンス・デプロイ・モデリング)を、短い読書時間で反復できるように整えました。
👉 https://amzn.to/3LGrzPS
👉 https://amzn.to/4qgCEW0
🧠 Advancedシリーズ(上/中/下)
Databricksを “設計・運用する” ための完全版実践書
「ゼロから触ってわかった!Databricks非公式ガイド」の続編として誕生した Advancedシリーズ は、
Databricksを触って慣れた“その先”――本格運用・チーム開発・資格対策・再現性ある設計 に踏み込む構成です。
Databricks Certified Data Engineer Professional(2025年9月改訂版)のカリキュラムをベースに、
設計思考・ガバナンス・コスト最適化・トラブルシュートなど、実務で必須の力を養えます。
📘 [上]開発・デプロイ・品質保証編
📘 [中]取込・変換・監視・コスト最適化編
📘 [下]セキュリティ・ガバナンス・トラブルシュート・最適化戦略編
n8n
『n8n──ゼロから触ってわかった!AIワークフロー自動化!非公式ガイド』
オープンソースの自動化ツール n8n を “ゼロから手を動かして” 学べる実践ガイド。
プログラミングが苦手な方でも取り組めるよう、画面操作中心のステップ構成で、
業務自動化・AI連携・API統合の基礎がしっかり身につきます。
Salesforce
『ゼロから触ってわかった!Salesforce AgentForce + Data Cloud 非公式ガイド』
Salesforceの最新AI基盤 AgentForce と Data Cloud を、実際の操作を通じて理解できる解説書。
エージェント設計、トピック/アクション構築、プロンプトビルダー、RAG(検索拡張生成)など、
2025年以降のAI×CRMのハンズオン知識をまとめた一冊です。
要件定義(上流工程/モダンデータスタック)
『モダンデータスタック時代の シン・要件定義 クラウド構築大全 ― DWHからCDP、そしてMA / AI連携へ』
クラウド時代の「要件定義」って、どうやって考えればいい?
Databricks・Snowflake・Salesforce・n8nなど、主要サービスを横断しながら“構築の全体像”をやさしく解説!
DWHからCDP、そしてMA/AI連携まで──現場で使える知識をこの一冊で。
💡 まとめ:このラインナップで“構築者の視点”が身につく
これらの書籍を通じて、
クラウド基盤の理解 → 要件定義 → 分析基盤構築 → 自動化 → AI統合 → 運用最適化
までのモダンデータスタック時代のソリューションアーキテクトとしての全体像を
「体系的」かつ「実践的」に身につけることができます。
- PoC要件整理
- データ基盤の要件定義
- チーム開発/ガバナンス
- AIワークフロー構築
- トラブルシュート
など、現場で直面しがちな課題を解決する知識としても活用できます。
