0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

Databricks のサンプルデータセットの1つである TPC-H のデータからSpark データフレームを作成する方法

Last updated at Posted at 2022-12-01

概要

Databricks のサンプルデータセットの1つである TPC-H のデータから、Spark データフレームを作成する方法を共有します。

# ストレージのファイルを表示する
display(dbutils.fs.ls('dbfs:/databricks-datasets/tpch/data-001'))

path_to_md = "dbfs:/databricks-datasets/tpch/README.md"
displayHTML("<pre>" + dbutils.fs.head(path_to_md) + "</pre>")

path_to_md = "dbfs:/databricks-datasets/tpch/data-001/README.md"
displayHTML("<pre>" + dbutils.fs.head(path_to_md) + "</pre>")

image.png

TPC-H がどういったものであるかは、下記の記事で整理しております。

データベースの性能検証に利用されるTPC-HとTPC-DSに関するざっくりとした整理 - Qiita

データフレームの作成方法

customer

 
filepath = "dbfs:/databricks-datasets/tpch/data-001/customer/customer.tbl"
 
schema = """
  c_custkey long,
  c_name string,
  c_address string,
  c_nationkey long,
  c_phone string,
  c_acctbal decimal(12, 2),
  c_mktsegment string,
  c_comment string
"""
   
df = (spark
       .read
       .format("csv")
       .schema(schema)
       .option("sep", "|")
       .load(filepath)
    )

image.png

lineitem

filepath = "dbfs:/databricks-datasets/tpch/data-001/lineitem/lineitem.tbl"
 
schema = """
  l_orderkey    integer ,
  l_partkey     integer ,
  l_suppkey     integer ,
  l_linenumber  integer ,
  l_quantity    decimal(15,2) ,
  l_extendedprice  decimal(15,2) ,
  l_discount    decimal(15,2) ,
  l_tax         decimal(15,2) ,
  l_returnflag  string ,
  l_linestatus  string ,
  l_shipdate    date ,
  l_commitdate  date ,
  l_receiptdate date ,
  l_shipinstruct string ,
  l_shipmode     string ,
  l_comment      string
"""
   
df = (spark
       .read
       .format("csv")
       .schema(schema)
       .option("sep", "|")
       .load(filepath)
    )

image.png

nation

filepath = "dbfs:/databricks-datasets/tpch/data-001/nation/nation.tbl"
 
schema = """
  n_nationkey  integer
  ,n_name       string
  ,n_regionkey  integer 
  ,n_comment    string
"""
   
df = (spark
       .read
       .format("csv")
       .schema(schema)
       .option("inferSchema", "True")
       .option("sep", "|")
       .load(filepath)
    )

image.png

orders

 
filepath = "dbfs:/databricks-datasets/tpch/data-001/orders/orders.tbl"
 
schema = """
    o_orderkey long,
    o_custkey long,
    o_orderstatus string,
    o_totalprice decimal(12, 2),
    o_orderdate date,
    o_orderpriority string,
    o_clerk string,
    o_shippriority int,
    o_comment string
"""
   
df = (spark
       .read
       .format("csv")
       .schema(schema)
       .option("sep", "|")
       .load(filepath)
    )

image.png

part

filepath = "dbfs:/databricks-datasets/tpch/data-001/part/part.tbl"
 
schema = """
  p_partkey long,
  p_name string,
  p_mfgr string,
  p_brand string,
  p_type string,
  p_size int,
  p_container string,
  p_retailprice decimal(12, 2),
  p_comment string
"""
   
df = (spark
       .read
       .format("csv")
       .schema(schema)
       .option("sep", "|")
       .load(filepath)
    )

image.png

partsupp

filepath = "dbfs:/databricks-datasets/tpch/data-001/partsupp/partsupp.tbl"
 
schema = """
  ps_partkey long,
  ps_suppkey long,
  ps_availqty int,
  ps_supplycost decimal(12, 2),
  ps_comment string
"""
   
df = (spark
       .read
       .format("csv")
       .schema(schema)
       .option("sep", "|")
       .load(filepath)
    )

image.png

region

filepath = "dbfs:/databricks-datasets/tpch/data-001/region/region.tbl"
 
schema = """
    r_regionkey long,
    r_name string,
    r_comment string
"""
   
df = (spark
       .read
       .format("csv")
       .schema(schema)
       .option("sep", "|")
       .load(filepath)
    )

image.png

supplier

filepath = "dbfs:/databricks-datasets/tpch/data-001/supplier/supplier.tbl"
 
schema = """
  s_suppkey long,
  s_name string,
  s_address string,
  s_nationkey long,
  s_phone string,
  s_acctbal decimal(12, 2),
  s_comment string
"""
   
df = (spark
       .read
       .format("csv")
       .schema(schema)
       .option("sep", "|")
       .load(filepath)
    )

image.png

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?