1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

フビニの定理にたどり着くまで②

Last updated at Posted at 2019-12-26

概要

以前書いたフビニの定理にたどり着くまで①の続きになります。
リッジレット変換で出てきたルベーグ積分を少し勉強しようと思って始まったことでしたが、難しかったので将来また必要になった時に帰ってきてまた勉強したいと思います。

重積分を累次積分として表現し、一次元の積分まで落とし込むことが重積分の計算には必要ですが、ルベーグ積分において重積分をこの累次積分に落とし込み、結果としてフビニの定理までいきます。

参考にした講義資料など

などです。ぜひ興味のある方はこちらに飛んでください。

今回押さえておきたい言葉たち

以前のフビニの定理にたどり着くまで①の続きとして、フビニの定理に行き着くまで必要ないくつかの定義や定理を追っていきましょう。いい参照先があれば追加していきます。

  • σ-加法族
  • 測度
  • 測度空間
  • 特性関数
  • 階段関数
  • ルベーグ積分の定義
  • 可測関数
  • 直積測度
  • µ-可積分
  • µ-零集合
  • フビニの定理

σ-加法族

$X$を集合とし、$2^X$でその部分集合の全体とするとき、
Screen Shot 2019-12-26 at 16.14.28.png

測度、測度空間

Screen Shot 2019-12-26 at 16.14.34.png

特性関数

Screen Shot 2019-12-26 at 16.15.59.png

階段関数

Screen Shot 2019-12-26 at 16.16.04.png

ルベーグ積分の定義

Screen Shot 2019-12-26 at 16.16.13.png

可測関数

直積測度

Screen Shot 2019-12-26 at 16.22.28.png Screen Shot 2019-12-26 at 16.22.36.png Screen Shot 2019-12-26 at 16.22.05.png Screen Shot 2019-12-26 at 16.22.11.png

µ-可積分

Screen Shot 2019-12-26 at 16.24.31.png

µ-零集合

Screen Shot 2019-12-26 at 16.25.27.png

フビニの定理

Screen Shot 2019-12-26 at 16.19.41.png

終わりに

参考文献を追うだけの記事になってしまいましたが、ルベーグ積分はリーマン積分の拡張であり、重積分からの累次積分への落とし込みに関してもリーマン積分より厳密に定義されています。それによって導かれるフビニの定理により、累次積分の順序の交換がルベーグ積分に応用できることがわかりました。
今の所機械学習のニュアンスでフビニの定理が出てきたことは、ニューラルネットの積分表示におけるリッジレット変換の解説のところでしかありませんでしたが、他にも必要になった時にはいつでもこれらの参考文献に戻って学習できればと思います。
とりあえず今回はこれで。

おわり。

1
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?