LoginSignup
0
0

R3 on "What are the most important statistical ideas of the past 50 years? " Andrew Gelman, Aki Vehtari(35)

Last updated at Posted at 2021-10-31

R3(References on References on References) on "What are the most important statistical ideas of the past 50 years? " Andrew Gelman, Aki Vehtari(35)

R3 on "What are the most important statistical ideas of the past 50 years? " Andrew Gelman, Aki Vehtari(0)
https://qiita.com/kaizen_nagoya/items/a8eac9afbf16d2188901

What are the most important statistical ideas of the past 50 years?
Andrew Gelman, Aki Vehtari
https://arxiv.org/abs/2012.00174

References

35

Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory 52, 1289– 1306.

References on 35

35.1

[1] D. L. Donoho, M. Vetterli, R. A. DeVore, and I. C. Daubechies, “Data compression and harmonic analysis,” IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2435–2476, Oct. 1998.

References on 35.1

35.1.1

[1] N. Ahmed and T. Natarajan and K. R. Rao, Discrete cosine transform, IEEE Trans. on
Computers, Vol. 23, pp. 88-93, Jan. 1974.
[2] Aslaksen, E.W. and Klauder, J.R. (1968) Unitary representations of the a±ne group. J.
Math. Phys. 9 206-211.
[3] Auscher, P., Weiss, G. and Wickerhauser, G. (1992) Local sine and cosine bases of Coifman
and Meyer and the construction of smooth wavelets, in Wavelets: A Tutorial in Theory and
Applications, Chui, C.K. (ed.) New York: Academic Press
[4] Barlow, H.B. (1961) Possible principles underlying the transformation of sensory messages.
In Rosenbluth, W.A., editor, Sensory Communication, pages 217-234. MIT Press, Cambridge.
[5] Berger. T. (1971) Rate Distortion Theory: A mathematical basis for data compression.
Prentice Hall: Englewood Cli®s, N.J.
[6] Birg¶e, L. (1983) Approximation dans les espaces m¶etriques et th¶eorie de l'estimation.
(French) [Approximation in metric spaces and the theory of estimation] Z. Wahrsch. Verw.
Gebiete 65 (1983), no. 2, 181{237.
[7] Birg¶e, L. and Massart, P. (1997) Wavelet Compression of Besov Classes.
[8] Birman, M.S. and Solomjak, M.Z. (1967) Piecewise-Polynomial Approximations of Functions
of the classes W®
p , Mat. Sbornik 73, 295-317.
[9] Calder¶on, A.P. (1964) Intermediate Spaces and Interpolation, the Complex Method. Studia
Math. 24 113-190.
[10] Carl, B. and Stephani, I. (1990) Entropy, Compactness, and the Approximation of Operators.
Cambridge.
[11] L. Carleson (1980) The Work of Charles Fe®erman. in Proc. Int. Cong. Math. Helsinki 1978,
Acad. Sci. Fennica, pp 53-56.
[12] Cohen A. and J.P.D'Ales (1997) Non-linear Approximation of Random functions SIAM J.
of Appl. Math 57, 518-540
[13] Cohen, A., Daubechies, I., Vial,P., (1993) Orthonormal Wavelets for the Interval. Appl.
Comput. Harmonic Anal. 1, no. 1.
57
[14] Cohen, A., Daubechies, I., Guleryuz, O.,and Orchard, M., (1997) On the importance of
combining wavelet-based non-linear approximation in coding strategies, Manuscript.
[15] Cohen, A., Daubechies, I. and DeVore, R.A. (1998) Manuscript.
[16] R. R. Coifman (1974) \A real-variable characterizationof Hp", Studia Math. 51 269-274.
[17] R. R. Coifman and M. V. Wickerhauser, \Entropy-based algorithms for best basis selection",
Vol. 38, No. 2, March 1992, pp. 713{718.
[18] Coifman, R.R. and Meyer, Y. (1991) Remarques sur l'Analyse de Fourier µa fen^etre, C.R.
Acad Sci. Paris 312, 259-261.
[19] Cover T. M. and Thomas, J.A. (1991) Elements of Information Theory, Wiley, NY 1991.
[20] Daubechies, I. (1988) Orthonormal Bases of Compactly SupportedWavelets. Commun. Pure
Appl. Math. 41 909-996.
[21] Daubechies, Ingrid. (1990) The wavelet transform, time-frequency localization, and signal
analysis. IEEE Trans. IT. 36, 961-1005.
[22] Daubechies, I., Ja®ard, S. and Journ¶e, J.L. (1990) A simple Wilson orthonormal basis with
exponential decay SIAM J. Math. Anal. 24, 520-527.
[23] Daubechies, Ingrid. (1992) Ten Lectures on Wavelets. SIAM: Philadelphia.
[24] David, G. and Semmes, S. (1993) Analysis of and on Uniformly Recti¯able Sets. Amer.
Math. Soc., Mathematical Surveys and Monographs 38.
[25] DeLeeuw, K., Kahane, J.P., and Katznelson, Y. (1978) Sur les coe±cients de Fourier des
fonctions continues. C. R. Acad. Sci. Paris , 285 1001-1003.
[26] DeVore, R.A., Jawerth,B. and B. Lucier (1992) Image compression through wavelet transform
coding. IEEE Trans. Info.Theory 38, 719-746.
[27] DeVore, R. and Yu, X.M.(1990) Degree of Adaptive Approximation. Math. Comp. 55, 625-
635.
[28] DeVore, R., Jawerth, B. and Popov, V.A. (1992) Compression of wavelet decompositions
American Journal of Math. 114 737-785.
[29] DeVore, R.A. and Lorentz, G.G. (1993) Constructive Approximation. Springer: New York.
[30] Donoho, D.L. (1993) Unconditional bases are optimal bases for data compression and statistical
estimation. Appl. Comput. Harmonic Anal. 1, no. 1. pp 100-105.
[31] Donoho, D.L. (1996) Unconditional bases and bit-level compression. Appl. Comput. Harmonic
Anal. 3, no. 4, pp 388{392.
[32] Donoho, D.L. (1997) CART and Best-Ortho-Basis: a connection. Ann. Statist. 25 (1997),
no. 5, 1870{1911.
[33] Donoho, D.L. (1998) Counting Bits with Kolmogorov and Shannon. Manuscript.
[34] Dudley, R. M. (1967) The sizes of compact subsets of Hilbert spaces and continuity of
Gaussian Processes, J. Funct. Anal. 1, 290-330.
[35] Edmunds, D.E. and H. Triebel (1996) Function spaces, entropy numbers, and di®erential
operators. Cambridge Univ. Press.
[36] Field, D.J. (1987) The analysis of natural images and the response properties of cortical
cells. Journ. Opt. Soc. Am.
58
[37] Field, D.J. (1994) What is the goal of sensory coding? Neural Computation, 6 (4): 559-601.
[38] Folland, G. (1989) Harmonic Analysis in Phase Space. Princeton University Press.
[39] Feichtinger, H.G. (1989) Atomic Characterizations of Modulation Spaces through Gabortype
representations. Rocky Mount. J. Math. 19 113-126.
[40] Fe®erman, C. (1983) The Uncertainty Principle. Bull. Amer. Math. Soc. 9 129-206.
[41] Frazier, M., and Jawerth, B. (1988) The Á-transform and applications to distribution
spaces, in Function Spaces and Applications, M. Cwikel et al. eds., Lect. Notes Math. 1302,
Springer-Verlag, Berlin. pp 223-246.
[42] Frazier, M., Jawerth, B., and Weiss, G. (1991) Littlewood-Paley Theory and the Study
of Function Spaces. CBMS Regional Conference Series in Mathematics, # 79. American
Mathematical Society.
[43] Gabor, D. (1946) Theory of Communication. J. Inst. Elect. Eng. 93, pp. 429-457.
[44] Garnett, J. (1981) Bounded Analytic Functions. Academic.
[45] A.Gersho and R.M.Gray, Vector Quantization and Signal Compression, Kluwer Academic
Pub., Boston, 1992.
[46] R. Godement (1947), Sur les relations d'orthogonalit¶e de V. Bargmann, C.R. Acad. Sci.
Paris 255 521-523; 657-659
[47] R.M. Gray and D.L. Neuho®, \Quantization," IEEE Transactions on Information Theory,
this issue.
[48] V.Goyal and M.Vetterli \Computation-Distortion Characteristics of Block Transform Coding,"
ICASSP-97, Munich, April 1997, Vol. 4, pp.2729-2732.
[49] Grochenig, K. and Samarah, S. (1998) Non-linear approximation with local Fourier bases.
Manuscript.
[50] Grochenig, K. and Walnut, D. (1998) Wilson Bases are Unconditional Bases for Modulation
Spaces.
[51] Grossmann, A. and Morlet, J. (1984) Decomposition of Hardy functions into squareintegrable
wavelets of constant shape. SIAM J. Appl. Math. 15, 723-736.
[52] Hardy, G.H. (1940) A Mathematician's Apology. Cambridge University Press.
[53] Howe, R. (1980) On the role of the Heisenberg group in hramonic analysis Bull Amer. Math.
Soc. 3 821-843.
[54] J. J. Y. Huang and P. M. Schultheiss, Block Quantization of Correlated Gaussian Random
Variables, IEEE-Trans-Comm, Vol. 11, pp. 289{296, Sept. 1963.
[55] Jones, P. (1990) Recti¯able sets and the Travelling Salesman Problem. Inventiones Mathematicae.
102, 1-15.
[56] Jones, P. (1994) Lennart Carleson's work in Analysis. in Festschrift in Honor of Lennart
Carleson and Yngve Domar, (Acta Universitatis Upsaliensis 58). Almquist and Wiksell
International Publishers, Stockholm.
[57] Kahane, J.P and Lemari¶e-Rieusset, P.G. (1995) Fourier Series and Wavelets. Luxemburg:
Gordon and Breach.
[58] Klauder, J. and Skagerstam, B. (1985) Coherent States, Applications in Physics and Mathematical
Physics. Singapore: World Scienti¯c.
59
[59] Kolmogorov, A. N. (1956) On the Shannon theory of information transmission in the case
of continuous signals, Trans IRE, IT-2 102-108.
[60] Kolmogorov, A.N. (1956) Some fundamental problems in the approximate and exact representation
of functions of one or several variables. Proc III. Math Congress USSR Vol. 2 pp.
28-29. MCU Press, Moscow. Reprinted in Komogorov's Selected Works, Vol. I.
[61] Kolmogorov, A.N. and Tikhomirov, V.M. (1959) ²-entropy and ²-capacity. Uspekhi Mat.
Nauk 14 3-86. (Engl Transl. Amer. Math. Soc. Transl. Ser 2 Vol 17 277-364.
[62] H. P. Kramer and M. V. Mathews, A linear coding for transmitting a set of correlated
signals, IRE Trans. Info. Theory, Vol. 23, pp. 41-46, Sep. 1956.
[63] Lemari¶e, P.G. and Meyer Y. (1986) Ondelettes et Bases Hilbertiennes, Revista Mat. Iberomamericana
2, 1-18.
[64] S. LoPresto, K. Ramchandran and M. T. Orchard, Image coding based on mixture modeling
of wavelet coe±cients and a fast estimation-quantization framework, Data Compression
Conference '97, Snowbird, Utah, pp. 221{230, 1997.
[65] Lorentz, G. G. Metric Entropy and Approximation. Bull. Amer. Math. Soc. 72 November
1966, 903-937.
[66] Le Cam, L. (1973) Convergence of Estimates under Dimensionality Restrictions. Ann.,
Statist. 1, 38-53.
[67] A. S. Lewis and G. Knowles, \Image Compression Using the 2-D Wavelet transform," IEEE
Tr. on Image Processing, Vol. 1, No. 2, April 1992, pp. 244{250.
[68] S. Mallat, "A Theory for Multiresolution Signal Decomposition: the Wavelet Representation",
IEEE Tr. PAMI, 11, No. 7, pp. 674-693, July 1989.
[69] S.Mallat and F.Falzon, \Analysis of low bit rate image transform coding," IEEE Tr. SP,
46, no.4, pp 1027-42, April 1998.
[70] H. S. Malvar and D. H. Staelin, "The LOT: transform coding without blocking e®ects",
IEEE Tr. on ASSP, Vol. 37, No. 4, pp. 553-559.
[71] Malvar, H.S. (1992) Extended lapped transforms: Properties, applications, and fast algorithms.
IEEE Trans. Sign. Proc. 40 2703-2714
[72] Meyer, Y. (1993) Review of An introduction to Wavelets and Ten Lectures on Wavelets.
Bull. Amer. Math. Soc. 28, 350-359.
[73] Meyer, Y. (1990) Ondelettes et Operateurs. Hermann: Paris.
[74] Meyer, Y. (1992) Lecture at CIRM Luminy meeting, Wavelets and Applications, March
1992.
[75] F. Mintzer, "Filters for Distortion-Free Two-Band Multirate Filter Banks", IEEE Tr. on
ASSP, Vol. 33, No. 3, June 1985, pp. 626{630.
[76] Pinkus, Allan. (1983) n-widths in Approximation Theory. Springer.
[77] Pisier, G. (1989) The Volume of Convex Bodies and Banach Space Geometry, Cambridge
University Press.
[78] Ramsay, J.O. and Silverman, B.W. (1997) Functional Data Analysis. Springer: New York.
[79] K.Ramchandran and M.Vetterli, \Best wavelet packet bases in a rate-distortion sense,"
IEEE Trans. on Image Processing, Vol. 2, No. 2, April 1993, pp. 160-175.
60
[80] Ruderman, D.L. "Origins of scaling in natural images" VISION RESEARCH Elsevier, Dec.
1997. vol.37, no.23, p. 3385-98
[81] A.Said and W.A.Pearlman, \A new, fast and e±cient image codec based on set partitioning
in hierachical trees," IEEE Tr. on Circuits and Systems for Video Techn., Vol. 6, pp.243-250,
June 1996.
[82] Shannon, C.E. (1948) A mathematical theory of communication. Bell System Technical
Journal, 27, 379-423, 623-656.
[83] Shannon, C.E. (1949) Communication in the presence of noise. Proceedings IRE 37 10-21.
[84] Shannon, C.E. (1956) The Bandwagon. in N.J.A.Sloane and A.D.Wyner, \Claude Elwood
Shannon: collected papers, IEEE Press, 1993.
[85] J. M. Shapiro, \Embedded Image Coding Using Zerotrees of Wavelet Coe±cients," IEEE
Tr. on Signal Processing, Vol. 41, No. 12, Dec. 1993, pp. 3445{3462.
[86] Simoncelli, Eero.
[87] Smith, M.J.T. and Barnwell, T.P. III (1986), Exact reconstruction for tree-structured subband
coders, IEEE Trans. Acoust., Speech, and Signal Proc.. 35 431-441
[88] Stein, E. (1970) Singular Integrals and Di®erentiability Properties of Functions. Princeton
University Press.
[89] Stein, E. (1993) Harmonic Analysis: real variable methods, orthogonality, and oscillatory
integrals. Princeton University Press.
[90] Stromberg, Jan Olov. (1982) in Festschrift in Honor of Antoni Zygmund, Wadsworth Publishers,
Monterey CA.
[91] Stromberg, Jan Olov. (1994) Maximal functions, Hardy Spaces, BMO, and Wavelets, from
my point of view. in Festschrift in Honor of Lennart Carleson and Yngve Domar, (Acta
Universitatis Upsaliensis 58). Almquist and Wiksell International Publishers, Stockholm.
[92] Triebel, H. (1983) Theory of Function Spaces, Birkhauser, Basel.
[93] Tikhomirov, V.M. (1983) Widths and Entropy. Uspekhi Mat. Nauk. 38 91-99 (in Russian).
English Translation: Russian Math Surveys 38 101-111.
[94] Tikhomirov, V.M. (1992) Commentary: ²-Entropy and ²-Capacity. in A.N. Kolmogorov:
Selected Works. III. Information Theory and Theory of Algorithms. A.N. Shiryaev, Ed.
Kluwer Academic Publishers.
[95] Torresani, B. (1992) Time-frequency representations: wavelet packets and optimal decomposition
Annales de l'Institut Henri Poincare (Physique Th¶eorique), 56, no.2, p. 215-34,
[96] P. P. Vaidyanathan, "Quadrature Mirror Filter Banks, M-band Extensions and Perfect
Reconstruction Techniques", IEEE ASSP Magazine, Vol. 4, No. 3, July 1987, pp. 4{20.
[97] M.Vetterli, \Multi-dimensional subband coding: some theory and algorithms," Signal Processing,
Vol. 6, No.2, pp. 97-112, April 1984.
[98] M.Vetterli, \Filter banks allowing perfect reconstruction," Signal Processing, Vol.10, No.3,
April 1986, pp.219-244.
[99] M.Vetterli and J.Kova·cevi¶c, Wavelets and Subband Coding, Prentice-Hall, Englewood Cli®s,
NJ, 1995.
[100] P. H. Westerink and J. Biemond and D. E. Boekee and J. W. Woods, "Subband Coding
of Images Using Vector Quantization", IEEE Tr. on Comm., Vol. 36, No. pp. 713-719, June, 1988.
[101] J. W. Woods and S. D. O'Neil, \Sub-Band Coding of Images," IEEE Tr. ASSP, Vol. 34,
No. 5, Oct. 1986, pp. 1278{1288.
[102] Zygmund, A. (1959) Trigonometric Series. Vols. I & II. Cambridge University Press.

35.2

[2] Y. Meyer, Wavelets and Operators. Cambridge, U.K.: Cambridge Univ. Press, 1993.
[3] D. L. Donoho, “Unconditional bases are optimal bases for data compres- sion and for statistical estimation,” Appl. Comput. Harmonic Anal., vol. 1, pp. 100–115, 1993.
[4] , “Sparse components of images and optimal atomic decomposi- tion,” Constructive Approx., vol. 17, pp. 353–382, 2001.
[5] A. Pinkus, “􏰍-widths and optimal recovery in approximation theory,” in Proc. Symp. Applied Mathematics, vol. 36, C. de Boor, Ed., Providence, RI, 1986, pp. 51–66.
[6] J. F. Traub and H. Woziakowski, A General Theory of Optimal Algo- rithms. New York: Academic, 1980.
[7] D. L. Donoho, “Unconditional bases and bit-level compression,” Appl. Comput. Harmonic Anal., vol. 3, pp. 388–92, 1996.
[8] A. Pinkus, 􏰍-Widths in Approximation Theory. New York: Springer- Verlag, 1985.
[9] A. Y. Garnaev and E. D. Gluskin, “On widths of the Euclidean ball” (in English), Sov. Math.–Dokl., vol. 30, pp. 200–203, 1984.
[10] B.S.Kashin,“Diametersofcertainfinite-dimensionalsetsinclassesof smooth functions,” Izv. Akad. Nauk SSSR, Ser. Mat., vol. 41, no. 2, pp. 334–351, 1977.
[11] D. L. Donoho, “For most large underdetermined systems of linear equations, the minimal 􏰙 -norm solution is also the sparsest solution,” Commun. Pure Appl. Math., to be published.
[12] A. C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, and M. Strauss, “Near-optimal sparse fourier representations via sampling,” in Proc 34th ACM Symp. Theory of Computing, Montréal, QC, Canada, May 2002, pp. 152–161.
[13] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency informa- tion.,” IEEE Trans. Inf. Theory, to be published.
[14] E. J. Candès, “Robust Uncertainty Principles and Signal Recovery,” presented at the 2nd Int. Conf. Computational Harmonic Anaysis, Nashville, TN, May 2004.
[15] C. A. Micchelli and T. J. Rivlin, “A survey of optimal recovery,” in Op- timal Estimation in Approximation Theory, C. A. Micchelli and T. J. Rivlin, Eds: Plenum, 1977, pp. 1–54.
[16] J. Peetre and G. Sparr, “Interpolation of normed abelian groups,” Ann. Math. Pure Appl., ser. 4, vol. 92, pp. 217–262, 1972.
[17] J. Bergh and J. Löfström, Interpolation Spaces. An Introduc-
tion. Berlin, Germany: Springer-Verlag, 1976.
[18] B. Carl, “Entropy numbers 􏰓-numbers, and eigenvalue problems,” J. Funct. Anal., vol. 41, pp. 290–306, 1981.
[19] G. Pisier, The Volume of Convex Bodies and Banach Space Geom-
etry. Cambridge, U.K.: Cambridge Univ. Press, 1989.
[20] C. Schütt, “Entropy numbers of diagonal operators between symmetric Banach spaces,” J. Approx. Theory, vol. 40, pp. 121–128, 1984.
[21] T. Kuhn, “A lower estimate for entropy numbers,” J. Approx. Theory, vol. 110, pp. 120–124, 2001.
[22] S. Gal and C. Micchelli, “Optimal sequential and nonsequential proce- dures for evaluating a functional,” Appl. Anal., vol. 10, pp. 105–120, 1980.
[23] A. A. Melkman and C. A. Micchelli, “Optimal estimation of linear oper- ators from inaccurate data,” SIAM J. Numer. Anal., vol. 16, pp. 87–105, 1979.
[24] M. A. Kon and E. Novak, “The adaption problem for approximating linear operators,” Bull. Amer. Math. Soc., vol. 23, pp. 159–165, 1990.
[25] E. Novak, “On the power of adaption,” J. Complexity, vol. 12, pp. 199–237, 1996.
[26] S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM J. Sci Comp., vol. 20, no. 1, pp. 33–61, 1999.
[27] D. L. Donoho and X. Huo, “Uncertainty principles and ideal atomic de-
composition,” IEEE Trans. Inf. Theory, vol. 47, no. 7, pp. 2845–62, Nov.
2001.
[28] M. Elad and A. M. Bruckstein, “A generalized uncertainty principle and
sparse representations in pairs of bases,” IEEE Trans. Inf. Theory, vol.
49, no. 9, pp. 2558–2567, Sep. 2002.
[29] D. L. Donoho and M. Elad, “Optimally sparse representation from over-
complete dictionaries via 􏰙 norm minimization,” Proc. Natl. Acad. Sci. USA, vol. 100, no. 5, pp. 2197–2002, Mar. 2002.

[30] R. Gribonval and M. Nielsen, “Sparse representations in unions of bases,” IEEE Trans Inf Theory, vol. 49, no. 12, pp. 3320–3325, Dec. 2003.
[31] J. J. Fuchs, “On sparse representation in arbitrary redundant bases,” IEEE Trans. Inf. Theory, vol. 50, no. 6, pp. 1341–1344, Jun. 2002.
[32] J. A. Tropp, “Greed is good: Algorithmic results for sparse approxima-
tion,” IEEE Trans Inf. Theory, vol. 50, no. 10, pp. 2231–2242, Oct. 2004. [33] , “Just relax: Convex programming methods for identifying sparse signals in noise,” IEEE Trans Inf. Theory, vol. 52, no. 3, pp. 1030–1051,
Mar. 2006.
[34] D. L. Donoho, M. Elad, and V. Temlyakov, “Stable recovery of sparse
overcomplete representations in the presence of noise,” IEEE Trans. Inf.
Theory, vol. 52, no. 1, pp. 6–18, Jan. 2006.
[35] D. L. Donoho, “For most underdetermined systems of linear equations,
the minimal 􏰙 -norm near-solution approximates the sparsest near-so-
lution,” Commun. Pure Appl. Math., to be published.
[36] I. C. Daubechies, Ten Lectures on Wavelets. Philadelphia, PA: SIAM,
1992.
[37] S. Mallat, A Wavelet Tour of Signal Processing. San Diego, CA: Aca-
demic, 1998.
[38] A. Cohen, R. DeVore, P. Petrushev, and H. Xu, “Nonlinear approxima-
tion and the space 􏰕􏰘 􏰀􏰗 􏰁,” Amer. J. Math., vol. 121, pp. 587–628,
1999.
[39] E. J. Candès and D. L. Donoho, “Curvelets—A surprisingly effective
nonadaptive representation for objects with edges,” in Curves and Sur- faces, C. Rabut, A. Cohen, and L. L. Schumaker, Eds. Nashville, TN: Vanderbilt Univ. Press, 2000.
[40] , “New tight frames of curvelets and optimal representations of ob- jects with piecewise 􏰖 singularities,” Comm. Pure Appl. Math., vol. LVII, pp. 219–266, 2004.
[41] S. J. Szarek, “Spaces with large distances to 􏰙 and random matrices,” Amer. J. Math., vol. 112, pp. 819–842, 1990.
[42] , “Condition numbers of random matrices,” J. Complexity, vol. 7, pp. 131–149, 1991.
[43] A. Dvoretsky, “Some results on convex bodies and banach spaces,” in Proc. Symp. Linear Spaces, Jerusalem, Israel, 1961, pp. 123–160.
[44] T. Figiel, J. Lindenstrauss, and V. D. Milman, “The dimension of almost-
spherical sections of convex bodies,” Acta Math., vol. 139, pp. 53–94,
1977.
[45] V. D. Milman and G. Schechtman, Asymptotic Theory of Finite-Dimen-
sional Normed Spaces (Leecture Notes in Mathematics). Berlin, Ger-
many: Springer-Verlag, 1986, vol. 1200.
[46] D. Pollard, Empirical Processes: Theory and Applications. Hayward,
CA: Inst. Math. Statist., vol. 2, NSF-CBMS Regional Conference Series
in Probability and Statistics.
[47] E. J. Candès and T. Tao, “Near-optimal signal recovery from random
projections: Universal encoding strategies,” Applied and Computational Mathematics, Calif. Inst. Technol., Tech. Rep., 2004.

参考資料(References)

Data Scientist の基礎(2)
https://qiita.com/kaizen_nagoya/items/8b2f27353a9980bf445c

岩波数学辞典 二つの版がCDに入ってお得
https://qiita.com/kaizen_nagoya/items/1210940fe2121423d777

岩波数学辞典
https://qiita.com/kaizen_nagoya/items/b37bfd303658cb5ee11e

アンの部屋(人名から学ぶ数学:岩波数学辞典)英語(24)
https://qiita.com/kaizen_nagoya/items/e02cbe23b96d5fb96aa1

<この記事は個人の過去の経験に基づく個人の感想です。現在所属する組織、業務とは関係がありません。>

最後までおよみいただきありがとうございました。

いいね 💚、フォローをお願いします。

Thank you very much for reading to the last sentence.

Please press the like icon 💚 and follow me for your happy life.

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0