0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

R3 on "W.a.t.m.i. statistical ideas of the past 50 years? " Andrew Gelman, Aki Vehtari(32)

Last updated at Posted at 2021-10-19

R3(References on References on References) on "W.a.t.m.i. (What are the most important) statistical ideas of the past 50 years? " Andrew Gelman, Aki Vehtari(32)

R3(References on References on References) on "W.a.t.m.i. (What are the most important )statistical ideas of the past 50 years? " Andrew Gelman, Aki Vehtari(0)
https://qiita.com/kaizen_nagoya/items/a8eac9afbf16d2188901

What are the most important statistical ideas of the past 50 years?
Andrew Gelman, Aki Vehtari
https://arxiv.org/abs/2012.00174

References

32

Del Moral, P. (1996). Nonlinear filtering: Interacting particle resolution. Markov Processes and Related Fields 2, 555–580.

References on 32

32.1

DI H. CARVALHO, P. DEL MORAL, A. MONIN, G. SALUT, Optimal non-linear filtering in GPS/INS Integration, IEEE trans. on Aerospace and electronic systems 1995 (to appear).

Reference on 32.1

32.1.1

[1] Britting, K R. (1971) Inertia( Navigation Systems Analysis. New York: Wiley, 1971.

32.1.2

[2] Bucy, R. S. (1965) Nonlinear filtering. IEEE Transactions on Automatic Control. AC-I0 (1965).

32.1.3

[3] Buechler, D., and Fuss, M. (1990) InMgration of GPS and strapdown inertial subsystems into single unit In Les Methodes d'Analyde de Conception et de Syntheas pour les Systemes de Gracious a de Pilotage, AGARD-443-314, (]PAN, 1990.

32.1.4

[4] Camberlein, L, et al. (1992) Integration optimisee de l'inertie et du GPS. In Les Systeme, de Navigae!on &Mares Multifonction, AGARD-CP-525, MAN, Nov. 1992.

32.1.5

[5] Carvalho, H., Mo.n, A., and Sant, G. (1994) FiItrage optimal n.Eneaire du signal GPS NAVSTAR recalage de cennales de navigation. Rapp. LAAS 94534, July 1994.

32.1.6

[6] Chaffee, J. Ws and Abel, J. S. (1992) The GPS filtering problem. In Position Location and Navigation Symposium, IEEE AES Society, 1992.

32.1.7

Del Moral, P (1994) Resolution particulaire des problemes d'estimation et &optimisation non-linekixes. These de l'Universite Paul Saba., LAAS-CNRS, Toulouse, June 1994.

32.1.8

Del Moral, F, Noyer, J. C., Rigal, G., and Saint, G. (1993) Traitement non-liniaire du signal par re.. particulaire: Application RADAR. In 10.5 Colloque GRETSI, Juan I. Pins, Sept- 1993.

32.1.9

Del Moral, P. and Salut, G. (1995) Filtrage non-lineaire: Resolution particuMire a la Monte-Carlo. C. R. Acrid Mi. Paris, t. 320, Effie I (1995), 1147-1152.

32.1.10

Denaro, R., et al. (1988) GPS navigation processing and Kalman filtering. In T. NAVSTAR CPS System, AGARD-I-5-161, CHAN. 1988.

32.1.11

Paurre, P.(1971) Navigation Inch-idle Optimale et Mirage Staistique. Pure: Dunod, 1971.

32.1.12

Gordon, N. J.. Salmond, and Smith, A. P. M. (1992) Novel approach to no.nearormn-Gaussian Bayroian sta. .timation. IEEE Proceedings, Pt. F, 140, 2 (Oct 1992), 107-113.

32.1.13

Grevial, M. S. (1985) Application of Kalman filtering to the calibration and .goment of inertial navigation systems. In Position Location and Navigation Symposium IEEE ADS Society, 1986.

32.1.14

Hoffmann-Wellanhof, 6., et al. (1992) GAS Theory and Practice (2nd ed.). New York: Springer-Verlag, 1992.

32.1.15

[15] Huillet, T., and Sank G. (1989) Interpretation des equations du filtrage non-lineaire. In Seances du GDR Automatique du CNRS (Pole nomlineaire), Paris, Nov. 8,1989.

32.1.16

[16] lmwnski, A. H. (1970) Stochastic Processes and DIMring Theory. New York: Academic Pre., 1970.

32.1.17

[17] Kallianpur, G. (1980) Stochastic Filtering Theory. New York: Springer-Verlag, 1980.

32.1.18

[18] Kao, M. H., and lamer, D. (1983) Multiconfiguration Kalman filter design for high-performance GPS navigation. IEEE Transactions on Automatic Control, AC-28, 3 (Man 1983), 304-314.

32.1.19

[19] Knight, D. (1992) Achieving modularity with tightly-coupled GPS/INS. In Position Location and Navigation Symposium- IEEE AES Society, 1992.

32.1.20

[20] Kushner, H. J. (1964) On the differential equations satisfied by mnditional probability dunk. of Markov processes. SIAM faunal of Control, 2 (1964), 106-119.

32.1.21

[21] Lang, D., and McMillan J. (1989) Development of a marine integrated system. In Kalman Miter Integration of Modem Guidance and Navigation Systems, AGARD-LS-166, OTAN, 1989.

[22] Noyer, J. C., Rig., G., and Sahib G. (1993) Poursuite RADAR de cibles fortement man.uvrantes par filtrage non-1.6a.. Rapport LAAS 93444, Sept. 1993. [23] Poor, H. V. (1994) An Introchogion to Signal Detection and Estimation (2nd ed.). New York: Springer-Verlag, 1994. [24] Riga], G. (1993) Fil.ge non-linebire, resolution partieulaire et applications au buitement do sign.. These de l'Universite Paul Sabatier, LAAS-CNRS, Toulouse, July 1993.

32.2

[2] R. CERF, Une theorie asymptotique des Algorithmes Cenetiques, Universite Montpellier II, Sciences et techniques du Languedoc, 1994.

32.3

[3] M. CHALEYAT-MAUREL, D. MICHEL, Des resultats de non existence de filtres de dimension finie, C.R.Acad.Sci. Paris, Serie I, t. 296, 1983.

32.4

[4] P. DEL MORAL, G. RIGAL, J.C. NOYER, G. SALUT, Traitement non-lineaire du signal par ?Team particulaire Application Radar, quatorzieme colloque GRETSI, Juan les Pins, 13-16 Septembre 1993.

32.5

[5] P. DEL MORAL, Resolution particulaire des problemes d'estimation et d'optimisation non-lineaires, These de l'Universite Paul Sabatier, Rapport LAAS n°99269, Juin 1994.

32.6

[6] P. DEL MORAL, G. SALUT, Fikluge non-lineaire : resolution particulaire a la Monte-Carlo, C.R. Acad. Sci. Paris, Serie I, t. 320, 1995.

32.7

[7] P. DEL MORAL, Non linear filtering using random particles Probability Theory an Applica-tions, Volume 40, No 4, 1995.

32.8

[8] P. DEL MORAL, J.C. NOYER, G. SALUT, Resolution particulaire et traitement non-lineaire du signal Application Radar/Sonar, Traitement du signal, Septembre 1995.

32.9

[9] P. DEL MORAL, G. SALUT, Particle interpretation of nonlinear filtering and optimization Russian Journal of Mathematical Physics, in press, 1996.

32.10

[10] N.J. GORDON, D.J. SALMON, A.F.M. SMITH, Novel Approach to non-linear/non-Gaussian Bayesian state estimation, IEE 1993

32.11

[11] J.H. HOLLAND Adaptation in natural and artificial systems University of Michigan Press, Ann Arbor, 1975

32.12

[12] H. KUNITA Asymptotic Behavior of Nonlinear Filtering Errors of Marken, Processes, Journal of Multivariate Analysis, Vol. 1, No 4, p. 365-393, Dec. 1971

32.13

[13] L. STETTNER On Invariant Measures of Filtering Processes, Stochastic Differential Systems, Lecture Notes in Control and Information Sciences, 126, Springer Verlag, 1989.

参考資料(References)

Data Scientist の基礎(2)
https://qiita.com/kaizen_nagoya/items/8b2f27353a9980bf445c

岩波数学辞典 二つの版がCDに入ってお得
https://qiita.com/kaizen_nagoya/items/1210940fe2121423d777

岩波数学辞典
https://qiita.com/kaizen_nagoya/items/b37bfd303658cb5ee11e

アンの部屋(人名から学ぶ数学:岩波数学辞典)英語(24)
https://qiita.com/kaizen_nagoya/items/e02cbe23b96d5fb96aa1

<この記事は個人の過去の経験に基づく個人の感想です。現在所属する組織、業務とは関係がありません。>

最後までおよみいただきありがとうございました。

いいね 💚、フォローをお願いします。

Thank you very much for reading to the last sentence.

Please press the like icon 💚 and follow me for your happy life.

0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?