Explanation of Application Interface of AD/ADAS vehicle motion control, No.988, 2021-11
AUTOSARは、ISO、IEC、ITUと情報交換契約を結んでいません。
AUTOSAR文書には、ISO、IEC,ITU記述を全文引用することはできません。
WTO/TBT協定に基づき、国際的な調達は国際規格との差異を記述することにより文化依存しない仕様を目指します。
ISO、IEC、ITU文書を合わせて読むと技術内容は理解できます。
CAN、OSEK/VDX OS、DIAGは、ISO定義を先に確認しましょう。
OSEK COM、OSEK NMなどはISOの規定から基本的な部分で定義を変えています。
変更している部分を仕様等で明記するか、ISOを改定するとよいでしょう。
AUTOSARの参考文献欄の改定が進んでいません。
Glossary用語定義の網羅性が低いです。
本文を読む前に確認するとよいかもしれません。
本文を読んでから確認してもよいかもしれません。
AUTOSARが、2022年の版、R22-11公開しました。公開行事の模様は
AUTOSAR R22-11 Release Event 20221208
下記URL順次確認中です。
AUTOSAR R21-11記事一覧はこちら。
AUTOSAR 21-11,200文書読んだ。2022年5月にFO, AP, CP 全部到達。
AUTOSAR R21-11(0) 仕様ダウンロード一覧。単語帳。参考文献資料作成
AUTOSAR R21-11で廃止になりR22-11では発行していない文書など
文書は検索してダウンロードすることができます。
クラウドサービスにありがちな、あるのにないかのような検索結果が出ることがあります。
要求/仕様(Requirement and Specification)
一覧
AUTOSAR R22-11 Adaptive Platform 一覧はこちら。
Adaptive Platform Release Overview, No.782, AP, AUTOSAR 22-11 新
Foundation Release Overview, No.781, FO, AUTOSAR 22-11 新
Classic Platform Release Overview, AUTOSAR R22-11, CP, No.0(2)
AUTOSAR R22-11 マラソン
AUTOSAR 文書番号と発行年
AUTOSAR R22-11で リンク切れ、表示しない文書
Qiitaの記事の一覧は作成中です。
AUTOSAR R22-11 Qiita記事一覧 新
Abstract Platformとの関係
Template, TypeはAbstract Platformで統一的に定義するとよい。
Template, Typeで FO,AP,CP全体の全文書を一つに統合するとよい。
<この項は書きかけです。順次追記します。>
文書変更(Document Change)
• Add definition of PLN2 and VMC1
• Revision of Functional description of
ADAS Application
• Revision of ADAS Manager functions
and function description
• Add Appendix A and revision of
Appendix B
用語(terms)
Term | Description |
---|---|
ABS | Antilock Braking System |
ACC | Adaptive Cruise Control |
ACL | Acceleration |
ACT | Actuator |
ADAS | Advance Driver Assistance System |
AEB | Autonomous Emergency Braking |
BAS | Brake Assist |
BRK | Brake |
BRWS | Basic Rear Wheel Steering |
BSTS | Basic Steering Torque Superposition |
BSAS | Basic Steering Angle Superposition |
CBC | Cornering Brake Control |
CoG | Centre of Gravity |
DAS | Driver Assistance System |
DTC | Regulation of the Drag Torque |
EBD | Electronic Brake Force Distribution |
ECU | Electronic Control Unit |
EPB | Electronic Parking Brake |
ESC | Electronic Stability Control |
FA | Front Axle |
HDC | Hill Decent Control |
HHC | Hill Hold Control |
HMI | Human Machine Interface |
HW | Hardware |
I/F | Interface |
LKA | Lane Keep Assist |
MGR | Manager |
NVH | Noise, Vibration, Harshness |
OEM | Original Equipment Manufacturer |
PT | Powertrain |
RA | Rear Axle |
RSC | Roll Stability Control |
SR | Situation Recognition |
SSM | Stand Still Manager/Management |
STR | Steering |
SW | Software |
SW-C | Software Component |
TCS | Traction Control System |
VFB | Virtual Function Bus |
VGR | Variable Gear Ratio |
VLC | Vehicle Longitudinal Control |
VM | Vehicle Model |
VMC | Vehicle Motion Control |
VSS | Vehicle State Sensors |
YRC | Yaw Rate Control |
英日
日本語は仮訳
T.B.D.
参考(reference)
[1] Explanation of Application Interfaces of the Chassis Domain
AUTOSAR_EXP_AIChassis
[2] ISO 8855:2011, Road vehicles – Vehicle dynamics and road-holding ability – Vocabulary
http://www.iso.org
[3] Glossary, AUTOSAR_TR_Glossary
https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_TR_Glossary.pdf
[4] ISO 26262:2018 (all parts) – Road vehicles – Functional Safety
http://www.iso.org
[5] ISO/PAS 21448:2019 – Road vehicles – Safety of the intended functionality http://www.iso.org
ISO 21448:2022
Road vehicles — Safety of the intended functionality
2 Normative references
ISO 26262-1, Road vehicles — Functional safety — Part 1: Vocabulary
Bibliography
[1] COMMISSION RECOMMENDATION of 22 December 2006 on safe and efficient in-vehicle information and communication systems: update of the European Statement of Principles on human machine interface (2007/78/EC): https://data.europa.eu/eli/reco/2007/78/oj
[2] Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles, SAE Recommended Practice J3016_201806, https://www.sae.org/standards/content/j3016_201806
[3] Ulbrich S., Menzel T., Reschka A., Schuldt F., Mauer M., Defining and Substantiating the Terms Scene, Situation, and Scenario for Automated Driving", 2015 IEEE 18th International Conference on Intelligent Transportation Systems (ITSC), https://doi.org/10.1109/ITSC.2015.164
[4] CENELEC EN 50126-2:2017, Railway Applications - The Specification and Demonstration of Reliability, Availability, Maintainability and Safety (RAMS) - Part 2: Systems Approach to Safety
[5] ISO 34502, Road vehicles - Engineering framework and process of scenario-based safety evaluation
[6] Statistics and data about reported accidents and casualties on public roads in Great Britain (STATS19), UK Department for Transport, https://www.gov.uk/government/collections/road-accidents-and-safety-statistics
[7] German In-Depth Accident Study (GIDAS), accident data collection project in Germany, https://www.gidas.org/start-en.html
[8] NASS General Estimates System (GES), US Department of Transportation, https://www.nhtsa.gov/national-automotive-sampling-system/nass-general-estimates-system
[9] CARE database (Community database on Accidents on the Roads in Europe), https://road-safety.transport.ec.europa.eu/statistics-and-analysis/methodology-and-research/care-database_en
[10] IGLAD (Europe), http://www.iglad.net/
[11] Code of Practice for the design and evaluation of ADAS, EU Project RESPONSE 3; https://www.acea.be/uploads/publications/20090831_Code_of_Practice_ADAS.pdf
[12] DIN SAE SPEC 91381:2019, Terms and Definitions Related to Testing of Automated Vehicle Technologies
[13] Kuhn D.S., Kacker R.N., Lei Y., Combinatorial testing”, NIST report, June 25, 2012, https://www.nist.gov/publications/combinatorial-testing
[14] Kelly T., Rob Weaver R., “The Goal Structuring Notation – A Safety Argument Notation”, https://www-users.cs.york.ac.uk/tpk/dsn2004.pdf
[15] Stellet J.E., Brade T., Poddey A., Jesenski S., Branz W., Formalisation and algorithmic approach to the automated driving validation problem", 2019 IEEE Intelligent Vehicles Symposium (IV), https://doi.org/10.1109/IVS.2019.8813894
[16] Shappell S.A., Wiegmann D.A., The Human Factors Analysis and Classification-System – HFACS, February 2000 Final Report. This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161
[17] Hartjen L., Philipp R., Schuldt F., Howar F., Friedrich B., Classification of Driving Maneuvers in Urban Traffic for Parametrization of Test Scenarios“ in: 9. Tagung Automatisiertes Fahren, Lehrstuhl für Fahrzeugtechnik mit TÜV SÜD Akademie: https://mediatum.ub.tum.de/1535131.
[18] BSI PAS 1883:2020, AVSC Best Practice for Describing an Operational Design Domain
[19] Leveson N., Engineering a Safer World – Systems Thinking Applied to Safety. MIT Press, Cambridge, Massachusetts, USA 2011
[20] Leveson N., Thomas J., STPA-Handbook. 2018. Available for download at psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf
[21] Abdulkhaleq A. et al., A Systematic Approach Based on STPA for Developing a Dependable Architecture for Fully Automated Driving Vehicles, 4th European STAMP Workshop 2016, Procedia Engineering, 179, 41-51, 2017 https://www.sciencedirect.com/science/article/pii/S1877705817312109
[22] Abdulkhaleq A.,, Wagner, S, Lammering, D, Boehmert, H, Blueher, P Using STPA in Compliance with ISO 26262 for Developing a Safe Architecture for Fully Automated Vehicles. arXiv preprint arXiv:1703.03657, 2017.
[23] Abdulkhaleq A., Wagner S., Leveson N., A Comprehensive Safety Engineering approach for Software-Intensive Systems Based on STPA. Procedia Engineering, 128:2–11, 2015, https://www.researchgate.net/publication/265508075_Experiences_with_Applying_STPA_to_Software-Intensive_Systems_in_the_Automotive_Domain
[24] Sabaliauskaite G., Shen Liew L., Cui J., Integrating Autonomous Vehicle Safety and Security Analysis Using STPA Method and the Six-Step Model. International Journal on Advances in Security, 11(1&2):160–169, 2018.
[25] ISO 26262 (all parts), Road vehicles — Functional safety
[26] Fabris S., Priddy J., Harris F., “Method for Hazard Severity Assessment for the Case of Unintended Deceleration”, presented at 2012 VDA Auto SYS conference in Berlin.
[27] Piao J., McDonald M., Low speed car following behaviour from floating vehicle data’. IEEE IV2003 Intelligent Vehicles Symposium.
[28] Allen R., Magdaleno R., Serafin C., Eckert S., , Sieja F., Driver Car Following Behavior Under Test Track and Open Road Driving Condition," SAE Technical Paper 970170, 1997, https://doi.org/10.4271/970170
[29] Traffic Safety Facts N.H.T.S.S.A., 2015, https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812384
[30] Fabris S., Priddy J., Harris F., “Method for hazard severity assessment for the case of undemanded deceleration.”, Presented at VDA Automotive SYS Conference, Berlin, June 19/20, 2012, https://www.researchgate.net/publication/344452155_Method_for_hazard_severity_assessment_for_Method_for_hazard_severity_assessment_for_the_case_of_undemanded_deceleration_-_Simone_Fabris.
[31] Littlewood B., Wright D., “Some Conservative Stopping Rules for the Operational Testing of Safety-Critical Software”, IEEE Trans. SW Engng., 23(11), 673-683, Nov. 1997
[32] SIPOC – Wikipedia, https://en.wikipedia.org/wiki/SIPOC
[33] Hirsenkorn N., Kolsi H., Selmi M., Schaermann A., Hanke T., Rauch A., Rasshofer R., Biebl E., Learning Sensor Models for Virtual Test and Development. 11. Workshop Fahrerassistenzsysteme und automatisiertes Fahren, UniDAS, Walting, 2017
[34] de Gelder E., Paardekooper J.P., “Assessment of Automated Driving Systems using real-life scenarios,” IEEE Intell. Veh. Symp. Proc., no. IV, pp. 589–594, 2017.
[35] Functional Mockup Interface, http://functional-mockup-interface.org/
[36] ASAM OpenDRIVE, http://www.asam.net/standards/detail/opendrive/
[37] ASAM OpenCRG, http://www.asam.net/standards/detail/opencrg/
[38] ASAM OpenSCENARIO, http://www.asam.net/standards/detail/openscenario/
[39] Open Simulation Interface (OSI), https://github.com/OpenSimulationInterface
[40] Navigation Data Standard, https://www.nds-association.org/
[41] CityGML, http://www.opengeospatial.org/standards/citygml
[42] Vaicenavicius J., Wiklund T., Grigaite A., Kalkauskas A., Vysniauskas I., Keen S. D., Self-driving car safety quantification via component-level analysis’. SAE International Journal of Connected and Automated Vehicles, Volume 4, Issue 1, pp 35-45, 2021.
[43] Shalev-Schwarz S., Shammah S., Shashua A., On a Formal Model of Safe and Scalable Self-driving Cars https://arxiv.org/abs/1708.06374v6
[44] Nistér D., Lee H.-L., Ng J., Wang Y., An Introduction to the Safety Force Field, https://www.nvidia.com/content/dam/en-zz/Solutions/self-driving-cars/safety-force-field/an-introduction-to-the-safety-force-field-v2.pdf
[45] FRAADE-BLANDAR L, BLUMENTHAL M. S., ANDERSON J. M. KALRA N. – RAND: Measuring Automated Vehicle Safety – https://www.rand.org/content/dam/rand/pubs/research_reports/RR2600/RR2662/RAND_RR2662.pdf
[46] Kendall A., Gal Y., “What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?”, NIPS 2017.
[47] Phan B., Khan S., Salay R., Czarnecki K., “Bayesian Uncertainty Quantification with Synthetic Data”. WAISE 2019.
[48] Koopman P., Wagner M., Autonomous Vehicle Safety: An Interdisciplinary Challenge," IEEE Intelligent Transportation Systems Magazine, Special Issue on SSIV, 2017, in press Vol. 9 #1, Spring 2017, pp. 90-96
[49] Molnar C., A Guide for Making Black Box Models Explainable, 2021, https://christophm.github.io/interpretable-ml-book/
[50] Zhang Q., Zhu S.-C., Visual Interpretability for Deep Learning: a Survey", 2018, https://arxiv.org/abs/1802.00614
[51] Lapuschkin S., Wäldchen S., Binder A., Montavon G., Samek W., Müller K. R., "Unmasking Clever Hans predictors and assessing what machines really learn", 2019, In: Nature Communications 1096 (2019), https://www.nature.com/articles/s41467-019-08987-4
[52] U.S. Department of Transportation. (Jul.2017). Vehicle-to-vehicle communication technology.[Online]. Available:https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/v2v_fact_sheet_101414_v2a.pdf
[53] Tsugawa S., Jeschke S., Shladover S. E., “A Review of Truck Platooning Projects for Energy Savings”, IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1, 2016
[54] Wang J., Liu J., Kato N., “Networking and communications in autonomous driving: A survey”, IEEE Communications Surveys & Tutorials, vol.21. no.2, Q2, 2019
[55] 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Enhancement of 3GPP support for V2X scenarios; Stage 1(Release 16) 3GPP TS 22.186 V16.2.0 (2019-06).
[56] IATF 16949, Quality management system requirements for automotive production and relevant service parts organisations
[57] ISO/IEC/IEEE 15288, Systems and software engineering — System life cycle processes
[6] JASPAR Standards Document: ST-AVI-1 – AD/ADAS Vehicle Motion Control Interface Specification Ver. 2.0
関連文書(Related document)
AUTOSAR Abstract Platformへの道(詳細編)
2023年1月 記事数一覧
年末100記事を30点に仕上げる。
2023 書き初め
「はじめてのCAN/CANFD 」 ベクタージャパン <エンジニア夏休み企画>【読書感想文】
三方良し Udemy 車載LAN入門講座 CAN通信編
詳解 車載ネットワーク CAN, CAN FD, LIN, CXPI, Ethernetの仕組みと設計のために(1) 著者 <エンジニア夏休み企画 読書感想文>
詳解 車載ネットワーク CAN, CAN FD, LIN, CXPI, Ethernetの仕組みと設計のために(2)参考文献 <エンジニア夏休み企画>【読書感想文】
詳解 車載ネットワーク CAN、CAN FD、LIN、CXPI、Ethernetの仕組みと設計のために
AUTOSAR Abstract Platform User Group Weekly Report(1) 2022.1.8
AUTOSAR Abstract Platform User Group Weekly Report(2) 2022.1.15
更新資料 Abstract Platform, Vehicle Modelへの対応版
Explanation of Application Interface of AD/ADAS vehicle motion control, AUTOSAR 988, R22-11, CP, 20230421
https://qiita.com/kaizen_nagoya/items/711d9c66323ea932be5a
<この記事は個人の過去の経験に基づく個人の感想です。現在所属する組織、業務とは関係がありません。>
文書履歴(document history)
ver. 0.01 初稿 20221201
ver. 0.02 URL追記 20230102
ver. 0.03 URL追記 20230208
ver. 0.04 ありがとう追記 20230814
最後までおよみいただきありがとうございました。
いいね 💚、フォローをお願いします。
Thank you very much for reading to the last sentence.
Please press the like icon 💚 and follow me for your happy life.