R3(References on References on References) on "What are the most important statistical ideas of the past 50 years? " Andrew Gelman, Aki Vehtari(37)
R3 on "What are the most important statistical ideas of the past 50 years? " Andrew Gelman, Aki Vehtari(0)
https://qiita.com/kaizen_nagoya/items/a8eac9afbf16d2188901
What are the most important statistical ideas of the past 50 years?
Andrew Gelman, Aki Vehtari
https://arxiv.org/abs/2012.00174
References
37
Donoho, D. L, and Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425–455.
References on 37
37.1
BICKEL P J Minimax estimation of a normal mean sub ject to doing well at a p oint, In Recent Advances in Statistics M H Rizvi J S Rustagi and D Siegmund eds Academic Press New York
References on 37.1
37.1.1
Limiting the Risk of Bayes and Empirical Bayes Estimators—Part I: The Bayes Case
B. Efron, C. Morris
Mathematics
1971
Abstract The first part of this article considers the Bayesian problem of estimating the mean, θ, of a normal distribution when the mean itself has a normal prior. The usual Bayes estimator for this… Expand
37.1.2
The use of Previous Experience in Reaching Statistical Decisions
J. L. Hodges, E. Lehmann
Mathematics
1952
Instead of minimizing the maximum risk it is proposed to re-strict attention to decision procedures whose maximum risk does not exceed the minimax risk by more than a given amount. Subject to this… Expand
37.1.3
Robust Estimation of a Location Parameter
P. J. Huber
Mathematics
1964
This paper contains a new approach toward a theory of robust estimation; it treats in detail the asymptotic theory of estimating a location parameter for contaminated normal distributions, and… Expand
37.1.4
On robust estimation of the location parameter
F. R. Forst
Computer Science
37.1.5
A Natural Identity for Exponential Families with Applications in Multiparameter Estimation
H. Hudson
Mathematics
1978
37.1.6
FISHER INFORMATION AND THE PITMAN ESTIMATOR OF A LOCATION PARAMETER
S. Port, C. J. Stone
Mathematics
1974
37.1.7
" Nonoptimality of Preliminary Test Estimators for the Mean of a Multivariate Normal Distribution
" Ann . Math . Statist .
1972
37.1.8
Non-Optimality of Preliminary-Test Estimators for the Mean of a Multivariate Normal Distribution
S. Sclove, C. Morris, R. Radhakrishnan
Mathematics
1972
37.1.9
Admissible Estimators, Recurrent Diffusions, and Insoluble Boundary Value Problems
L. Brown
Mathematics
1971
37.1.10
Generalized Bayes Solutions in Estimation Problems
J. Sacks
Mathematics
1963
37.2
BREIMAN L FRIEDMAN JH OLSHEN RA STONE CJ CART Classication and Regression Trees Wadsworth CBelmont CA
37.3
BROCKMANN M GASSER T HERRMANN E Lo cally Adaptive Bandwidth Choice for Kernel Regression Estimators To app ear J Amer Statist Assoc
37.4
BROWN LD LOW MG Sup ereciency and lack of adaptability in non parametric functional estimation To app ear Annals of Statistics
37.5
COHEN A DAUBECHIES I JAWERTH B VIAL P Multiresolution analysis wavelets and fast algorithms on an interval Comptes Rendus Acad Sci ParisA 316. 417-421
37.6
CHUI CK An Introduction to Wavelets Academic Press Boston MA
37.7
DAUBECHIES I Orthonormal bases of compactly supp orted wavelets Com munications in Pure and Applied Mathematics Nov pp
37.8
DAUBECHIES I Ten Lectures on Wavelets SIAM Philadelphi a
37.9
DAUBECHIES I Orthonormal Bases of Compactly Supp orted Wavelets I I Variations on a theme SIAM J Math Anal
37.10
EFROIMOVICH S YU PINSKER MS A learning algorithm for non parametric ltering Automat i Telemeh in Russian
## 37.11
FRAZIER M JAWERTH B WEISS G LittlewoodPaley Theory and the study of function spaces NSFCBMS Regional Conf Ser in Mathematics American Math So c Providence RI
37.12
FRIEDMAN JH SILVERMAN BW Flexible Parsimonious Smo othing and Additive Mo deling with discussion Technometrics
37.13
FRIEDMAN JH Multiple Additive Regression Splines with discussion An nals of Statistics
37.14
GEORGE E I Foster D P The risk ination of variable selection in re gression Technical Rep ort University of Chicago
37.15
LEPSKII OV On one problem of adaptive estimation on white Gaussian
noise Teor Veoryatnost i Primenen in Russian Theory of Probability and Appl in English
37.16
MALGOUYRES G Ondelettes sur lIntervalle algorithmes rapides Prepublications Mathematiques Orsay
37.17
MEYER Y Ondelettes et Operateurs I Ondelettes Hermann et Cie Paris
37.18
MEYER Yves Ondelettes sur lintervalle Revista Matematica IberoAmericana
37.19
MILLER AJ Selection of subsets of regression variables with discussion J R Statist Soc A
37.20
MILLER AJ Subset Selection in Regression Chapman and Hall London New York
37.21
MULLERHansGeorgSTADTMULLERUlrichVariablebandwidthkernel estimators of regression curves Ann Statist
37.22
TERRELL GR SCOTT DW Variable kernel density estimation Annals of Statistics
参考資料(References)
Data Scientist の基礎(2)
https://qiita.com/kaizen_nagoya/items/8b2f27353a9980bf445c
岩波数学辞典 二つの版がCDに入ってお得
https://qiita.com/kaizen_nagoya/items/1210940fe2121423d777
岩波数学辞典
https://qiita.com/kaizen_nagoya/items/b37bfd303658cb5ee11e
アンの部屋(人名から学ぶ数学:岩波数学辞典)英語(24)
https://qiita.com/kaizen_nagoya/items/e02cbe23b96d5fb96aa1
<この記事は個人の過去の経験に基づく個人の感想です。現在所属する組織、業務とは関係がありません。>
最後までおよみいただきありがとうございました。
いいね 💚、フォローをお願いします。
Thank you very much for reading to the last sentence.
Please press the like icon 💚 and follow me for your happy life.