LoginSignup
0
1

More than 1 year has passed since last update.

Explanation of Application Interface of AD/ADAS vehicle motion control, AUTOSAR R22-11, CP, No.988

Last updated at Posted at 2022-12-01

Explanation of Application Interface of AD/ADAS vehicle motion control, No.988, 2021-11

AUTOSAR R21-11記事一覧はこちら。

AUTOSAR 21-11,200文書読んだ。2022年5月にFO, AP, CP 全部到達。

AUTOSAR R21-11(0) 仕様ダウンロード一覧。単語帳。参考文献資料作成

AUTOSAR R21-11で廃止になりR22-11では発行していない文書など

<この項は書きかけです。順次追記します。>

• Add definition of PLN2 and VMC1
• Revision of Functional description of
ADAS Application
• Revision of ADAS Manager functions
and function description
• Add Appendix A and revision of
Appendix B

用語(terms)

Term Description
ABS Antilock Braking System
ACC Adaptive Cruise Control
ACL Acceleration
ACT Actuator
ADAS Advance Driver Assistance System
AEB Autonomous Emergency Braking
BAS Brake Assist
BRK Brake
BRWS Basic Rear Wheel Steering
BSTS Basic Steering Torque Superposition
BSAS Basic Steering Angle Superposition
CBC Cornering Brake Control
CoG Centre of Gravity
DAS Driver Assistance System
DTC Regulation of the Drag Torque
EBD Electronic Brake Force Distribution
ECU Electronic Control Unit
EPB Electronic Parking Brake
ESC Electronic Stability Control
FA Front Axle
HDC Hill Decent Control
HHC Hill Hold Control
HMI Human Machine Interface
HW Hardware
I/F Interface
LKA Lane Keep Assist
MGR Manager
NVH Noise, Vibration, Harshness
OEM Original Equipment Manufacturer
PT Powertrain
RA Rear Axle
RSC Roll Stability Control
SR Situation Recognition
SSM Stand Still Manager/Management
STR Steering
SW Software
SW-C Software Component
TCS Traction Control System
VFB Virtual Function Bus
VGR Variable Gear Ratio
VLC Vehicle Longitudinal Control
VM Vehicle Model
VMC Vehicle Motion Control
VSS Vehicle State Sensors
YRC Yaw Rate Control

英日

日本語は仮訳

T.B.D.

参考(reference)

[1] Explanation of Application Interfaces of the Chassis Domain
AUTOSAR_EXP_AIChassis
[2] ISO 8855:2011, Road vehicles – Vehicle dynamics and road-holding ability – Vocabulary
http://www.iso.org
[3] Glossary, AUTOSAR_TR_Glossary
https://www.autosar.org/fileadmin/standards/foundation/22-11/AUTOSAR_TR_Glossary.pdf
[4] ISO 26262:2018 (all parts) – Road vehicles – Functional Safety
http://www.iso.org

[5] ISO/PAS 21448:2019 – Road vehicles – Safety of the intended functionality http://www.iso.org

ISO 21448:2022
Road vehicles — Safety of the intended functionality

2 Normative references

ISO 26262-1, Road vehicles — Functional safety — Part 1: Vocabulary

Bibliography

[1] COMMISSION RECOMMENDATION of 22 December 2006 on safe and efficient in-vehicle information and communication systems: update of the European Statement of Principles on human machine interface (2007/78/EC): https://data.europa.eu/eli/reco/2007/78/oj
[2] Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles, SAE Recommended Practice J3016_201806, https://www.sae.org/standards/content/j3016_201806
[3] Ulbrich S., Menzel T., Reschka A., Schuldt F., Mauer M., Defining and Substantiating the Terms Scene, Situation, and Scenario for Automated Driving", 2015 IEEE 18th International Conference on Intelligent Transportation Systems (ITSC), https://doi.org/10.1109/ITSC.2015.164
[4] CENELEC EN 50126-2:2017, Railway Applications - The Specification and Demonstration of Reliability, Availability, Maintainability and Safety (RAMS) - Part 2: Systems Approach to Safety
[5] ISO 34502, Road vehicles - Engineering framework and process of scenario-based safety evaluation
[6] Statistics and data about reported accidents and casualties on public roads in Great Britain (STATS19), UK Department for Transport, https://www.gov.uk/government/collections/road-accidents-and-safety-statistics
[7] German In-Depth Accident Study (GIDAS), accident data collection project in Germany, https://www.gidas.org/start-en.html
[8] NASS General Estimates System (GES), US Department of Transportation, https://www.nhtsa.gov/national-automotive-sampling-system/nass-general-estimates-system
[9] CARE database (Community database on Accidents on the Roads in Europe), https://road-safety.transport.ec.europa.eu/statistics-and-analysis/methodology-and-research/care-database_en
[10] IGLAD (Europe), http://www.iglad.net/
[11] Code of Practice for the design and evaluation of ADAS, EU Project RESPONSE 3; https://www.acea.be/uploads/publications/20090831_Code_of_Practice_ADAS.pdf
[12] DIN SAE SPEC 91381:2019, Terms and Definitions Related to Testing of Automated Vehicle Technologies
[13] Kuhn D.S., Kacker R.N., Lei Y., Combinatorial testing”, NIST report, June 25, 2012, https://www.nist.gov/publications/combinatorial-testing
[14] Kelly T., Rob Weaver R., “The Goal Structuring Notation – A Safety Argument Notation”, https://www-users.cs.york.ac.uk/tpk/dsn2004.pdf
[15] Stellet J.E., Brade T., Poddey A., Jesenski S., Branz W., Formalisation and algorithmic approach to the automated driving validation problem", 2019 IEEE Intelligent Vehicles Symposium (IV), https://doi.org/10.1109/IVS.2019.8813894
[16] Shappell S.A., Wiegmann D.A., The Human Factors Analysis and Classification-System – HFACS, February 2000 Final Report. This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161
[17] Hartjen L., Philipp R., Schuldt F., Howar F., Friedrich B., Classification of Driving Maneuvers in Urban Traffic for Parametrization of Test Scenarios“ in: 9. Tagung Automatisiertes Fahren, Lehrstuhl für Fahrzeugtechnik mit TÜV SÜD Akademie: https://mediatum.ub.tum.de/1535131.
[18] BSI PAS 1883:2020, AVSC Best Practice for Describing an Operational Design Domain
[19] Leveson N., Engineering a Safer World – Systems Thinking Applied to Safety. MIT Press, Cambridge, Massachusetts, USA 2011
[20] Leveson N., Thomas J., STPA-Handbook. 2018. Available for download at psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf
[21] Abdulkhaleq A. et al., A Systematic Approach Based on STPA for Developing a Dependable Architecture for Fully Automated Driving Vehicles, 4th European STAMP Workshop 2016, Procedia Engineering, 179, 41-51, 2017 https://www.sciencedirect.com/science/article/pii/S1877705817312109
[22] Abdulkhaleq A.,, Wagner, S, Lammering, D, Boehmert, H, Blueher, P Using STPA in Compliance with ISO 26262 for Developing a Safe Architecture for Fully Automated Vehicles. arXiv preprint arXiv:1703.03657, 2017.
[23] Abdulkhaleq A., Wagner S., Leveson N., A Comprehensive Safety Engineering approach for Software-Intensive Systems Based on STPA. Procedia Engineering, 128:2–11, 2015, https://www.researchgate.net/publication/265508075_Experiences_with_Applying_STPA_to_Software-Intensive_Systems_in_the_Automotive_Domain
[24] Sabaliauskaite G., Shen Liew L., Cui J., Integrating Autonomous Vehicle Safety and Security Analysis Using STPA Method and the Six-Step Model. International Journal on Advances in Security, 11(1&2):160–169, 2018.
[25] ISO 26262 (all parts), Road vehicles — Functional safety
[26] Fabris S., Priddy J., Harris F., “Method for Hazard Severity Assessment for the Case of Unintended Deceleration”, presented at 2012 VDA Auto SYS conference in Berlin.
[27] Piao J., McDonald M., Low speed car following behaviour from floating vehicle data’. IEEE IV2003 Intelligent Vehicles Symposium.
[28] Allen R., Magdaleno R., Serafin C., Eckert S., , Sieja F., Driver Car Following Behavior Under Test Track and Open Road Driving Condition," SAE Technical Paper 970170, 1997, https://doi.org/10.4271/970170
[29] Traffic Safety Facts N.H.T.S.S.A., 2015, https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812384
[30] Fabris S., Priddy J., Harris F., “Method for hazard severity assessment for the case of undemanded deceleration.”, Presented at VDA Automotive SYS Conference, Berlin, June 19/20, 2012, https://www.researchgate.net/publication/344452155_Method_for_hazard_severity_assessment_for_Method_for_hazard_severity_assessment_for_the_case_of_undemanded_deceleration_-_Simone_Fabris.
[31] Littlewood B., Wright D., “Some Conservative Stopping Rules for the Operational Testing of Safety-Critical Software”, IEEE Trans. SW Engng., 23(11), 673-683, Nov. 1997
[32] SIPOC – Wikipedia, https://en.wikipedia.org/wiki/SIPOC
[33] Hirsenkorn N., Kolsi H., Selmi M., Schaermann A., Hanke T., Rauch A., Rasshofer R., Biebl E., Learning Sensor Models for Virtual Test and Development. 11. Workshop Fahrerassistenzsysteme und automatisiertes Fahren, UniDAS, Walting, 2017
[34] de Gelder E., Paardekooper J.P., “Assessment of Automated Driving Systems using real-life scenarios,” IEEE Intell. Veh. Symp. Proc., no. IV, pp. 589–594, 2017.
[35] Functional Mockup Interface, http://functional-mockup-interface.org/
[36] ASAM OpenDRIVE, http://www.asam.net/standards/detail/opendrive/
[37] ASAM OpenCRG, http://www.asam.net/standards/detail/opencrg/
[38] ASAM OpenSCENARIO, http://www.asam.net/standards/detail/openscenario/
[39] Open Simulation Interface (OSI), https://github.com/OpenSimulationInterface
[40] Navigation Data Standard, https://www.nds-association.org/
[41] CityGML, http://www.opengeospatial.org/standards/citygml
[42] Vaicenavicius J., Wiklund T., Grigaite A., Kalkauskas A., Vysniauskas I., Keen S. D., Self-driving car safety quantification via component-level analysis’. SAE International Journal of Connected and Automated Vehicles, Volume 4, Issue 1, pp 35-45, 2021.
[43] Shalev-Schwarz S., Shammah S., Shashua A., On a Formal Model of Safe and Scalable Self-driving Cars https://arxiv.org/abs/1708.06374v6
[44] Nistér D., Lee H.-L., Ng J., Wang Y., An Introduction to the Safety Force Field, https://www.nvidia.com/content/dam/en-zz/Solutions/self-driving-cars/safety-force-field/an-introduction-to-the-safety-force-field-v2.pdf
[45] FRAADE-BLANDAR L, BLUMENTHAL M. S., ANDERSON J. M. KALRA N. – RAND: Measuring Automated Vehicle Safety – https://www.rand.org/content/dam/rand/pubs/research_reports/RR2600/RR2662/RAND_RR2662.pdf
[46] Kendall A., Gal Y., “What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?”, NIPS 2017.
[47] Phan B., Khan S., Salay R., Czarnecki K., “Bayesian Uncertainty Quantification with Synthetic Data”. WAISE 2019.
[48] Koopman P., Wagner M., Autonomous Vehicle Safety: An Interdisciplinary Challenge," IEEE Intelligent Transportation Systems Magazine, Special Issue on SSIV, 2017, in press Vol. 9 #1, Spring 2017, pp. 90-96
[49] Molnar C., A Guide for Making Black Box Models Explainable, 2021, https://christophm.github.io/interpretable-ml-book/
[50] Zhang Q., Zhu S.-C., Visual Interpretability for Deep Learning: a Survey", 2018, https://arxiv.org/abs/1802.00614
[51] Lapuschkin S., Wäldchen S., Binder A., Montavon G., Samek W., Müller K. R., "Unmasking Clever Hans predictors and assessing what machines really learn", 2019, In: Nature Communications 1096 (2019), https://www.nature.com/articles/s41467-019-08987-4
[52] U.S. Department of Transportation. (Jul.2017). Vehicle-to-vehicle communication technology.[Online]. Available:https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/v2v_fact_sheet_101414_v2a.pdf
[53] Tsugawa S., Jeschke S., Shladover S. E., “A Review of Truck Platooning Projects for Energy Savings”, IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1, 2016
[54] Wang J., Liu J., Kato N., “Networking and communications in autonomous driving: A survey”, IEEE Communications Surveys & Tutorials, vol.21. no.2, Q2, 2019
[55] 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Enhancement of 3GPP support for V2X scenarios; Stage 1(Release 16) 3GPP TS 22.186 V16.2.0 (2019-06).
[56] IATF 16949, Quality management system requirements for automotive production and relevant service parts organisations
[57] ISO/IEC/IEEE 15288, Systems and software engineering — System life cycle processes

[6] JASPAR Standards Document: ST-AVI-1 – AD/ADAS Vehicle Motion Control Interface Specification Ver. 2.0

Countdown Calendar 2022

今年企画した6つのCountdown Calendarと、それぞれの記事一つをご紹介します。

AUTOSAR Countdown Calendar 2022

AUTOSAR References to ISO, IEC, ITU, IEEE, RFC and SEA etc.

Automotive Handbook Countdown Calendar 2022

Basic principles, ボッシュ自動車handbook(英語)11版まとめ<2>

2022 いいねをいただいた記事ランキング(O.K.版) Countdown Calendar 2022

2022年1月下旬 いいねをいただいた記事 16

CDCale(O.K.) Countdown Calendar 2022

「会議は15分未満」に。小耳にはさんだ話。

ABC language (O.K.版) Advent Calendar 2022

LLVMソースコードのコンパイルをしようと思ってハマった罠とそこから脱出するための努力

ABC maker(O.K版) Advent Calendar 2022

JAXA/IPA クリティカルソフトウェアワークショップ WOCS言語関連発表(改定版)

CountdownCalendar2022 報告

関連文書(Related document)

AUTOSAR Abstract Platformへの道(詳細編)

2023年1月 記事数一覧

年末100記事を30点に仕上げる。

2023 書き初め

「はじめてのCAN/CANFD 」 ベクタージャパン <エンジニア夏休み企画>【読書感想文】

三方良し Udemy 車載LAN入門講座 CAN通信編

詳解 車載ネットワーク CAN, CAN FD, LIN, CXPI, Ethernetの仕組みと設計のために(1) 著者  <エンジニア夏休み企画 読書感想文>

詳解 車載ネットワーク CAN, CAN FD, LIN, CXPI, Ethernetの仕組みと設計のために(2)参考文献 <エンジニア夏休み企画>【読書感想文】

詳解 車載ネットワーク CAN、CAN FD、LIN、CXPI、Ethernetの仕組みと設計のために

AUTOSAR Abstract Platform User Group Weekly Report(1) 2022.1.8

AUTOSAR Abstract Platform User Group Weekly Report(2) 2022.1.15

更新資料 Abstract Platform, Vehicle Modelへの対応版

Explanation of Application Interface of AD/ADAS vehicle motion control, No.988, CP, AUTOSAR R22-11 新

https://qiita.com/kaizen_nagoya/items/d2a79bff7a91b91146fe
<この記事は個人の過去の経験に基づく個人の感想です。現在所属する組織、業務とは関係がありません。>

文書履歴(document history)

ver. 0.01 初稿  20221201
ver. 0.02 URL追記 20230102
ver. 0.03 URL追記 20230208

最後までおよみいただきありがとうございました。

いいね、フォローをお願いします。

Thank you very much for reading to the last sentence.

Please press the like icon and follow me for your happy life.

0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1