0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

機械学習の基礎1 微分・積分メモ

Last updated at Posted at 2019-09-02

機械学習の基礎(微分・積分)を備忘録として残しておく

1.対数公式

① $ log_aa = 1$
② $ log_a1 = 0$
③ $log_aMN = log_aM + log_aN$
④ $ \displaystyle log_a {\frac{M}{N}} = log_aM - log_aN $
⑤ $ log_aM^r = rlog_aM$

2.微分の公式

① $(x^n+c)' = nx^{n-1} $
② $(f(x)・g(x))' = f'(x)・g(x)+f(x)・g'(x)$
③ $\displaystyle \left[ {\frac{f(x)}{g(x)}}\right]'= {\frac{f'(x)・g(x)-f(x)・g'(x))}{g(x)^2}} $
④ $(e^x)' = e^x$
⑤ $(log(x))' = {\frac{1}{x}}$
⑥ $\displaystyle {\frac{dy}{dx}}={\frac{dy}{du}}・{\frac{du}{dx}}$  (y = f(u), u = g(x)の時)

3.積分の公式

① $\displaystyle \int^b_a (x^n+c) dx = \left[ \frac{1}{n+1}x^{n+1} + cx\right]^b_a $
② $\displaystyle \int^b_a f(x) dx = \int^β_α f(g(t)) {\frac{dx}{dt}}dt $

③ $\displaystyle \int^b_a f'(x)g(x) dx = \left[ f(x)g(x)\right]^b_a-\int^b_a f(x) g'(x)dx $

④ $\displaystyle \int^b_a f(x)g'(x) dx = \left[ f(x)g(x)\right]^b_a-\int^b_a f'(x) g(x)dx $

4.微分の演習

1) $f(x) = 3x^4 - 2x^3 + 4x -5$

$f'(x)= 12x^3 - 6x^2 + 4$

2) $f(x) = (x^2 + 2x - 3) (2x - 1)$

$f'(x)=(x^2 + 2x - 3)'(2x - 1) + (x^2 + 2x - 3) (2x - 1)'$
    $ = (2x + 2)(2x - 1) + (x^2 + 2x - 3)・2 $
    $ = 4x^2 + 2x - 2 + 2x^2 + 4x - 6 $
    $ = 6x^2 + 6x - 8 $

3)$\displaystyle f(x) = \frac{2x + 5}{x^2 + 1} $  

$\displaystyle f'(x) = \frac{(2x + 5)'(x^2 + 1) - (2x + 5)(x^2 + 1)'}{(x^2 + 1)^2} $
    $\displaystyle = \frac{2(x^2 + 1) - (2x + 5)・2x}{(x^2 + 1)^2} $
    $\displaystyle = \frac{2x^2 + 2 - 4x^2 - 10x}{(x^2 + 1)^2} $
    $\displaystyle = \frac{-2x^2 - 10x + 2}{(x^2 + 1)^2} $

4)$ f(x) = (2x^3-x-1)^3 $ 

$u = 2x^3-x-1$と置くと、
$\displaystyle f'(x) = \frac{df(x)}{du}・\frac{du}{dx} $
    $ = (u^3)'(2x^3-x-1)' $
    $ = 3u^2(6x^2-1) $
    $ = 3(2x^3-x-1)^2(6x^2-1) $

5)$f(x)=\sqrt[4]{x^5}$

$\displaystyle f'(x) = (x^{\frac{5}{4}})' $
    $\displaystyle = \frac{5}{4}x^{\frac{5}{4} - 1} $
    $\displaystyle = \frac{5}{4}x^{\frac{1}{4}} $
    $\displaystyle = \frac{5}{4}\sqrt[4]{x} $

6) $ f(x) = \sqrt{2x^2 - 3} $ 

$\displaystyle f'(x) = ((2x^2 - 3)^\frac{1}{2})' $
    $\displaystyle = \frac{1}{2}(2x^2 - 3)^{\frac{1}{2}-1} (2x^2 - 3)'$
    $\displaystyle = \frac{1}{2}(2x^2 - 3)^{-\frac{1}{2}}・4x$
    $\displaystyle = 2x(2x^2 - 3)^{-\frac{1}{2}}$
    $\displaystyle = \frac{2x}{(2x^2 - 3)^\frac{1}{2}}$
    $\displaystyle = \frac{2x}{\sqrt{2x^2 - 3}}$

7) $ f(x) = (log x)^2 $

$ f'(x) = 2(log x)(log x)' $
    $\displaystyle = 2log x\frac{1}{x}$
    $\displaystyle = \frac{2log x}{x}$

8)$ f(x) = x(log x) $

$ f'(x) = x'(log x) + x(log x)' $
    $\displaystyle = 1・(log x) + x・\frac{1}{x}$
    $ = log x +1$

9) $ f(x) = e ^ {-3x}$

$ f'(x) = e ^ {-3x}・(-3x)'$
    $ = -3e^{-3x}$

10)$ f(x) = xe ^ x$

$ f'(x) = x'e ^ x + x(e ^ x)'$
    $ = e^x + xe^x$

5.偏微分の演習

1) $ z = x^2 -3xy + 2y^2 $

$\displaystyle \frac{\partial z}{\partial x} = 2x - 3y $
$\displaystyle \frac{\partial z}{\partial y} = -3x + 4y $

2) $\displaystyle z = \frac{x-y}{x+y} $

$\displaystyle \frac{\partial z}{\partial x} = \frac{(x-y)'(x+y) - (x-y)(x+y)'}{(x+y)^2} $
  $\displaystyle = \frac{1・(x+y) - (x-y)・1}{(x+y)^2} $
  $\displaystyle = \frac{2y}{(x+y)^2} $

$\displaystyle \frac{\partial z}{\partial y} = \frac{(x-y)'(x+y) - (x-y)(x+y)'}{(x+y)^2} $
  $\displaystyle = \frac{-1・(x+y) - (x-y)・1}{(x+y)^2} $
  $\displaystyle = \frac{-2x}{(x+y)^2} $

3) $ z = \sqrt{3x-4y} $

$\displaystyle \frac{\partial z}{\partial x} = ((3x-4y)^\frac{1}{2})' $
  $\displaystyle = \frac{1}{2}(3x-4y)^{-\frac{1}{2}}・3 $
  $\displaystyle = \frac{3}{2\sqrt{3x-4y}} $

$\displaystyle \frac{\partial z}{\partial y} = ((3x-4y)^\frac{1}{2})' $
  $\displaystyle = \frac{1}{2}(3x-4y)^{-\frac{1}{2}}・(-4) $
  $\displaystyle = \frac{-2}{\sqrt{3x-4y}} $

  1. $ z = e^{xy} $

$\displaystyle \frac{\partial z}{\partial x} = e^{xy}・y $
  $ = ye^{xy} $

$\displaystyle \frac{\partial z}{\partial y} = e^{xy}・x $
  $ = xe^{xy} $

5) $ z = log (x - y) $

$\displaystyle \frac{\partial z}{\partial x} = \frac{1}{x-y} $

$\displaystyle \frac{\partial z}{\partial y} = \frac{-1}{x-y} $

5.積分の演習

1) $\displaystyle \int^2_1 x^2 dx $

$\displaystyle = \left[ \frac{1}{3}x^3 \right]^2_1 $
$\displaystyle = (\frac{1}{3}・2^3) - (\frac{1}{3}・1^3) $
$\displaystyle = \frac{8}{3} - \frac{1}{3} $
$\displaystyle = \frac{7}{3} $

2) $\displaystyle \int^1_0 (x^4 + 4x^3 + 2x^2 - x + 5)dx $

$\displaystyle = \left[ \frac{1}{5}x^5 + x^4 + \frac{2}{3}x^3 - \frac{1}{2}x^2 + 5x \right]^1_0 $
$\displaystyle = \frac{1}{5} + 1 + \frac{2}{3} - \frac{1}{2} + 5 $
$\displaystyle = \frac{191}{30} $

3)$\displaystyle \int^1_0 (2x + 1)^4 dx $

$\displaystyle u = 2x + 1$ と置くと、 $ \frac{du}{dx} = 2$
$\displaystyle dx = \frac{du}{2} $
また、x=0の時、u=1。x=1の時、u=3。
よって、

$\displaystyle \int^1_0 (2x + 1)^4 dx $
$\displaystyle = \int_1^3 u^4 \frac{du}{2} $
$\displaystyle =\frac{1}{2} \left[ \frac{1}{5}u^5 \right]^3_1 $
$\displaystyle =\frac{1}{2} (\frac{1}{5}・3^5 - \frac{1}{5}・1^5) $
$\displaystyle =\frac{121}{5} $

4) $\displaystyle \int_0^1 \int_0^1 xy dxdy $

$\displaystyle \int_0^1 xy dx$ について解くと、
$\displaystyle= \left[\frac{x^2y}{2} \right]^1_0 $
$\displaystyle= \frac{y}{2} $
よって、  
$\displaystyle \int_0^1 \int_0^1 xy dxdy $
$\displaystyle= \int_0^1 \frac{y}{2} dy $
$\displaystyle= \left[\frac{y^2}{4} \right]^1_0 $
$\displaystyle = \frac{1}{4} $

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?