0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

3.05<π

Posted at

image.png

正12角形の場合

半径1の円に内接する正12角形を考える。
12個の二等辺三角形の集合に分ける。
その二等辺三角形を半分にして、15°の直角三角形を考える。
正12角形の長さは2x12xSIN(15°)

ここで、公式より

\sin(15°)=\sin(45-30)=\sin(45)\cos(30)-\cos(45)\sin(30)
\sin(15°)=\frac{\sqrt{2}}{2}\times\frac{\sqrt{3}}{2}
-\frac{\sqrt{2}}{2}\times\frac{1}{2}
=\frac{\sqrt{6}-\sqrt{2}}{4}

なので、正12角形の長さの半分(π)は

12\sin(15°)=12\frac{\sqrt{6}-\sqrt{2}}{4}=3(\sqrt{6}-\sqrt{2})

近似値で

3(2.449-1.414)=3.105
3.05 < 3.105

√6は覚えておこう

半角の公式

\sin\frac{\theta}{2}=\sqrt{\frac{1-\cos\theta}{2}}(0\le\theta\le\pi)

三倍角の公式

\sin(3\theta)=3\sin(\theta) -4\sin^3(\theta)

正8角形の場合

正8角形の長さは

16\sin(22.5°)
=16\sqrt{\frac{1-\frac{\sqrt{2}}{2}}{2}}
=16\frac{\sqrt{2-\sqrt{2}}}{2}
=8\sqrt{2-\sqrt{2}}

手計算できないので、2乗して比較。

(8\sqrt{2-\sqrt{2}})^2
=64(2-\sqrt{2})\approx64\times0.586=37.504
(2\times3.05)^2=37.21<37.504

というわけで、3.05よりも大きい。

3.06でも成立

(2\times3.06)^2=37.4544<37.504

余弦定理で

八角形1辺の長さxは

x^2=1^2+1^2-2\times1\times1\times\cos45°=2-\sqrt{2}
x=\sqrt{2-\sqrt{2}}

これの4倍と3.05との比較をする。
2乗して比較。

4^2(2-\sqrt{2})\approx16\times0.586=9.376>3.05^2=9.3025

半角の公式か、余弦定理を覚えていれば、解ける。

備考

\sin(18°)=\frac{\sqrt{5}-1}{4}\approx0.309
\sin(10°)=\frac{\sqrt{5-2\sqrt{5}}}{4}\approx0.174
0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?