Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

This article is a Private article. Only a writer and users who know the URL can access it.
Please change open range to public in publish setting if you want to share this article with other users.

More than 3 years have passed since last update.

(理論研用)TeXコマンド集

Last updated at Posted at 2022-02-10
  • AFIR関数

$$\begin{equation}
F(\mathbf{Q})=E(\mathbf{Q})+\rho \alpha \frac{\displaystyle \sum_{i \in \mathrm{A}} \sum_{j \in B} \omega_{i j} r_{i j}}{\displaystyle \sum_{i \in A} \sum_{j \in B} \omega_{i j}}
\end{equation}$$

AFIR関数
\begin{equation}
F(\mathbf{Q})=E(\mathbf{Q})+\rho \alpha \frac{\displaystyle \sum_{i \in \mathrm{A}} \sum_{j \in B} \omega_{i j} r_{i j}}{\displaystyle \sum_{i \in A} \sum_{j \in B} \omega_{i j}}
\end{equation}
  • AFIR関数のパラメータω

$$\begin{equation}
\omega_{i j}=\left[\frac{\left(R_{i}+R_{j}\right)}{r_{i j}}\right]^{p}
\end{equation}$$

AFIR関数のパラメータω
\begin{equation}
\omega_{i j}=\left[\frac{\left(R_{i}+R_{j}\right)}{r_{i j}}\right]^{p}
\end{equation}
  • AFIR関数のパラメータα

$$\begin{equation}
\alpha=\frac{\gamma}{\left[2^{\frac{1}{6}}-\left(1+\sqrt{1+\dfrac{\gamma}{\epsilon}}\right)^{\frac{1}{6}}\right] R_{0}}
\end{equation}$$

AFIR関数のパラメータα
\begin{equation}
\alpha=\frac{\gamma}{\left[2^{\frac{1}{6}}-\left(1+\sqrt{1+\dfrac{\gamma}{\epsilon}}\right)^{\frac{1}{6}}\right] R_{0}}
\end{equation}
  • model-function

$$\begin{equation}
F(\mathbf{Q})=\frac{1}{2}\left(E^{\mathrm{X}}(\mathbf{Q})+E^{\mathrm{Y}}(\mathbf{Q})\right)+\frac{\left(E^{\mathrm{X}}(\mathbf{Q})-E^{\mathrm{Y}}(\mathbf{Q})\right)^{2}}{\alpha}
\end{equation}$$

model-function
\begin{equation}
F(\mathbf{Q})=\frac{1}{2}\left(E^{\mathrm{X}}(\mathbf{Q})+E^{\mathrm{Y}}(\mathbf{Q})\right)+\frac{\left(E^{\mathrm{X}}(\mathbf{Q})-E^{\mathrm{Y}}(\mathbf{Q})\right)^{2}}{\alpha}
\end{equation}
  • DS-AFIR関数

$$\begin{equation}
F^{\mathrm{DS-AFIR}}(\mathbf{q})=E(\mathbf{q})+X\left\{Y|\mathbf{q}-\mathbf{p}|-(1-\mathrm{Y})\left|\mathbf{q}-\mathbf{q}_{0}\right|\right\} \
\end{equation}$$

DS-AFIR関数
\begin{equation}
F^{\mathrm{DS-AFIR}}(\mathbf{q})=E(\mathbf{q})+X\left\{Y|\mathbf{q}-\mathbf{p}|-(1-\mathrm{Y})\left|\mathbf{q}-\mathbf{q}_{0}\right|\right\}
\end{equation}

  • 遷移状態理論に基づく速度定数

$$\begin{equation}
k=\frac{k_{B} T}{h} \exp \left[-\frac{\Delta \Delta G^{\ddagger}}{R T}\right]
\end{equation}$$

遷移状態理論に基づく速度定数
\begin{equation}
k=\frac{k_{B} T}{h} \exp \left[-\frac{\Delta \Delta G^{\ddagger}}{R T}\right]
\end{equation}

  • Kohn-Sham 方程式

$$\begin{equation}
\left[-\nabla^{2}+V_{\text {ion }}(r)+V_{H}(r)+V_{x c}^{\sigma}(r)\right] \varphi_{i \sigma}(r)=\varepsilon_{i \sigma} \varphi_{i \sigma}(r)
\end{equation}$$

Kohn-Sham 方程式
\begin{equation}
\left[-\nabla^{2}+V_{\text {ion }}(r)+V_{H}(r)+V_{x c}^{\sigma}(r)\right] \varphi_{i \sigma}(r)=\varepsilon_{i \sigma} \varphi_{i \sigma}(r)
\end{equation}
  • ωB97X-D 汎関数

$$\begin{equation}
E_{xc}^{,\omega \mathrm{B} 97 \mathrm{X}}=E_{x}^{\mathrm{LR-HF}}+c_{x} E_{x}^{\mathrm{SR-HF}}+E_{x}^{\mathrm{SR-B} 97}+E_{c}^{\mathrm{B} 97}
\end{equation}$$

ωB97X-D 汎関数
\begin{equation}
E_{xc}^{\,\omega \mathrm{B} 97 \mathrm{X}}=E_{x}^{\mathrm{LR-HF}}+c_{x} E_{x}^{\mathrm{SR-HF}}+E_{x}^{\mathrm{SR-B} 97}+E_{c}^{\mathrm{B} 97}
\end{equation}
  • LR ハートリー・フォック交換項,SR ハートリー・フォック交換項

$$\begin{equation}
\begin{aligned}
E_{x}^{\mathrm{LR}-\mathrm{HF}}=&-\dfrac{1}{2} \sum_{\sigma} \sum_{i, j}^{\infty} \iint {\psi}_{i \sigma}^{\ast}\left(\mathbf{r}_{1}\right) {\psi}_{j \sigma}^{\ast}\left(\mathbf{r}_{1}\right) \\
& \times \frac{\operatorname{erf}\left(\omega r_{12}\right)}{r_{12}} {\psi}_{i \sigma}\left(\mathbf{r}_{2}\right) {\psi}_{j \sigma}\left(\mathbf{r}_{2}\right) d \mathbf{r}_{1} d \mathbf{r}_{2}
\end{aligned}
\end{equation}$$

$$\begin{equation}
\begin{aligned}
E_{x}^{\mathrm{SR}-\mathrm{HF}}=&-\dfrac{1}{2} \sum_{\sigma} \sum_{i, j}^{\infty} \iint {\psi}_{i \sigma}^{\ast}\left(\mathbf{r}_{1}\right) {\psi}_{j \sigma}^{\ast}\left(\mathbf{r}_{1}\right) \\
& \times \frac{\operatorname{erfc}\left(\omega r_{12}\right)}{r_{12}} {\psi}_{i \sigma}\left(\mathbf{r}_{2}\right) {\psi}_{j \sigma}\left(\mathbf{r}_{2}\right) d \mathbf{r}_{1} d \mathbf{r}_{2},
\end{aligned}
\end{equation}$$

ハートリー・フォック交換項
\begin{equation}
\begin{aligned}
E_{x}^{\mathrm{LR}-\mathrm{HF}}=&-\dfrac{1}{2} \sum_{\sigma} \sum_{i, j}^{\infty} \iint \psi_{i \sigma}^{*}\left(\mathbf{r}_{1}\right) \psi_{j \sigma}^{*}\left(\mathbf{r}_{1}\right) \\
& \times \frac{\operatorname{erf}\left(\omega r_{12}\right)}{r_{12}} \psi_{i \sigma}\left(\mathbf{r}_{2}\right) \psi_{j \sigma}\left(\mathbf{r}_{2}\right) d \mathbf{r}_{1} d \mathbf{r}_{2},
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
E_{x}^{\mathrm{SR}-\mathrm{HF}}=&-\dfrac{1}{2} \sum_{\sigma} \sum_{i, j}^{\infty} \iint \psi_{i \sigma}^{*}\left(\mathbf{r}_{1}\right) \psi_{j \sigma}^{*}\left(\mathbf{r}_{1}\right) \\
& \times \frac{\operatorname{erfc}\left(\omega r_{12}\right)}{r_{12}} \psi_{i \sigma}\left(\mathbf{r}_{2}\right) \psi_{j \sigma}\left(\mathbf{r}_{2}\right) d \mathbf{r}_{1} d \mathbf{r}_{2},
\end{aligned}
\end{equation}
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?