LoginSignup
0
1

More than 1 year has passed since last update.

相対論に関するLaTeXのコードをまとめました

Posted at

アインシュタイン方程式

\begin{equation}
G_{\mu\nu}=
\frac{8\pi G}{c^4} T_{\mu\nu}
\end{equation}
G_{\mu\nu}=
\frac{8\pi G}{c^4} T_{\mu\nu}

\begin{equation} と \end{equation} は数式の始まりと終わりを表します。
これがないとエラーが出るので注意。
以下省略します。

アインシュタインテンソル

G_{\mu\nu}\equiv R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R^{\alpha}{}_{\alpha}
G_{\mu\nu}\equiv R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R^{\alpha}{}_{\alpha}

リッチテンソル

R_{\mu\nu}\equiv \partial_{\alpha} \Gamma^{\alpha}{}_{\mu\nu} - \partial_{\mu} \Gamma^{\alpha}{}_{\nu\alpha} + \Gamma^{\alpha}{}_{\mu\nu} \Gamma^{\beta}{}_{\beta\alpha} - \Gamma^{\alpha}{}_{\mu\beta} \Gamma^{\beta}{}_{\nu\alpha} 
R_{\mu\nu}\equiv \partial_{\alpha} \Gamma^{\alpha}{}_{\mu\nu} - \partial_{\mu} \Gamma^{\alpha}{}_{\nu\alpha} + \Gamma^{\alpha}{}_{\mu\nu} \Gamma^{\beta}{}_{\beta\alpha} - \Gamma^{\alpha}{}_{\mu\beta} \Gamma^{\beta}{}_{\nu\alpha} 

クリストッフェル記号

\Gamma^{\alpha}{}_{\mu\nu} = \frac{1}{2} g^{\mu\nu} (\partial_{\mu} g_{\nu\beta} + \partial_{\nu} g_{\mu\beta} - \partial_{\beta} g_{\mu\nu})
\Gamma^{\alpha}{}_{\mu\nu} = \frac{1}{2} g^{\mu\nu} (\partial_{\mu} g_{\nu\beta} + \partial_{\nu} g_{\mu\beta} - \partial_{\beta} g_{\mu\nu})

ビアンキの恒等式

\nabla_{\lambda} R^{\mu}{}_{\nu\rho\sigma} + \nabla_{\rho} R^{\mu}{}_{\nu\sigma\lambda} + \nabla_{\sigma} R^{\mu}{}_{\nu\lambda\rho} = 0
\nabla_{\lambda} R^{\mu}{}_{\nu\rho\sigma} + \nabla_{\rho} R^{\mu}{}_{\nu\sigma\lambda} + \nabla_{\sigma} R^{\mu}{}_{\nu\lambda\rho} = 0

リーマンテンソル

R_{\alpha\beta\gamma\sigma} = \frac{1}{2}(\partial_{\alpha}\partial_{\sigma}h_{\beta\gamma} + \partial_{\beta}\partial_{\gamma}h_{\alpha\sigma} - \partial_{\beta}\partial_{\sigma}h_{\alpha\gamma} - \partial_{\alpha}\partial_{\gamma}h_{\beta\sigma})
\begin{equation}
R_{\alpha\beta\gamma\sigma} = \frac{1}{2}(\partial_{\alpha}\partial_{\sigma}h_{\beta\gamma} + \partial_{\beta}\partial_{\gamma}h_{\alpha\sigma} - \partial_{\beta}\partial_{\sigma}h_{\alpha\gamma} - \partial_{\alpha}\partial_{\gamma}h_{\beta\sigma})
\end{equation}

線形化されたアインシュタインテンソル

G_{\mu\nu} = \frac{1}{2}(-\Box\psi_{\mu\nu} + \partial_{\alpha}\partial_{\mu}\psi^{\alpha}{}{\nu} + \partial_{\alpha}\partial_{\nu}\psi^{\alpha}{}{\mu} - \eta_{\mu\nu}\partial_{\alpha}\partial_{\beta}\psi^{\alpha\beta})
G_{\mu\nu} = \frac{1}{2}(-\Box\psi_{\mu\nu} + \partial_{\alpha}\partial_{\mu}\psi^{\alpha}{}{\nu} + \partial_{\alpha}\partial_{\nu}\psi^{\alpha}{}{\mu} - \eta_{\mu\nu}\partial_{\alpha}\partial_{\beta}\psi^{\alpha\beta})

線形化されたアインシュタイン方程式

\Box\psi_{\mu\nu} = -\frac{16\pi G}{c^4} T_{\mu\nu}
\begin{equation}
\Box\psi_{\mu\nu} = -\frac{16\pi G}{c^4} T_{\mu\nu}
\end{equation}

参考文献

Bernard Schutz.江里口良治・二間瀬敏史 共訳
『シュッツ相対論入門』丸善株式会社 第2版,2010

奥村/晴彦,黒木裕介
[改訂第7版]LaTeX2ε美文書作成入門 技術評論社,2017

0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1