0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

ダランベールの解の導出

Posted at

状況設定

  • 無限長の伝送線路を考える
  • 損失なし

電信方程式, 波動方程式の導出

これは省略。気が向いたら書きます。

波動方程式を解く

波動方程式は以下のように表せる:
$$
\frac{\partial^2 f}{\partial t^2}=\frac{1}{v}\frac{\partial^2 f}{\partial t^2} \label{1}
$$
無損失経路について考えるので、
$$
V := 1/\sqrt{LC}
$$
ここで、以下の変数変換を定義:
$$
u= x+Vt,\space
v= x-Vt
$$
だから逆に
$$
x=\frac{u+v}{2}, \space t=\frac{u-v}{2V}
$$

故に、f(x,t)はu,vで
$$
f(x,t)=f(\frac{u+v}{2}, \frac{u-v}{2V})
$$

ここで偏微分の公式から:
$$
\frac{\partial }{\partial x}=\frac{\partial }{\partial u}\frac{\partial u}{\partial x}+\frac{\partial }{\partial v}\frac{\partial v}{\partial x}
$$
が成立するので、
$$
\frac{\partial f}{\partial x}=\frac{\partial f}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial x}\
=\frac{\partial f}{\partial u}+\frac{\partial f}{\partial v}
$$

$$
\therefore \frac{\partial^2 f}{\partial x^2}
=\frac{\partial}{\partial x}(\frac{\partial f}{\partial u}+\frac{\partial f}{\partial v})=\frac{\partial}{\partial x}\frac{\partial f}{\partial u}+\frac{\partial}{\partial x}\frac{\partial f}{\partial v}
$$

$$
=\frac{\partial^2 f}{\partial u^2}\frac{\partial u}{\partial x}+\frac{\partial^2 f}{\partial u\partial v}\frac{\partial v}{\partial x}+\frac{\partial^2 f}{\partial v^2}\frac{\partial v}{\partial x}+\frac{\partial^2 f}{\partial u \partial v}\frac{\partial u}{\partial x}\
$$

$$
=\frac{\partial^2 f}{\partial u^2}+2\frac{\partial^2 f}{\partial u \partial v}+\frac{\partial^2 f}{\partial v^2}
$$

また、tの二回偏微分は、
$$
\frac{\partial u}{\partial t}=V,\space \frac{\partial v}{\partial t}=-V
$$
であることを考えると、
$$
\frac{\partial^2 f}{\partial t^2}=V^2(\frac{\partial^2 f}{\partial u^2}-2\frac{\partial^2 f}{\partial u \partial v}+\frac{\partial^2 f}{\partial v^2})
$$

これを最初の波動方程式に代入:
$$
\frac{\partial^2 f}{\partial u\partial v}=0
$$

右辺は0であるから、これをuについて積分すると右辺にはvの関数もしくは定数が現れる。:
$$
\frac{\partial f}{\partial v}=g(v)
$$

続いて、vで積分すると、
$$
f(u,v)=G(v)+h(u)=g(v)+h(u)
$$

なお、G(v)はvの任意関数を表しているだけなので、$G(v)$を改めて$g(v)$とおいた。u,vをx,tの式で置換すると:

$$
f(u,v)=g(x-Vt)+h(x+Vt)
$$

ここでのgは後退波、hは進行波を表す(ので、$g=f_{-},\space h=f_{+}$と置き換えるといいかも)。

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?