0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

数学-三角関数-加法定理の証明

Last updated at Posted at 2018-08-22

加法定理の証明

戻る

余弦定理の証明

cos(α-β)の証明

kahouteiri-3.gif

\\
点P(\cos \alpha, \sin \alpha)、Q(\cos \beta, \sin \beta) とする。\\
\\
\begin{aligned}
余弦定理より、\\
PQ^2 &= OP^2 + OQ^2 - 2OP \cdot OQ \cdot \cos(\alpha - \beta) \\
&= 1^2 + 1^2 - 2 \cdot 1 \cdot 1 \cdot \cos(\alpha - \beta) \\
&= 2 - 2 \cos(\alpha - \beta) ・・・① \\
\end{aligned}\\
\\
\begin{aligned}
線分の長さから、\\
PQ^2 &= (\cos \beta - \cos \alpha)^2 + (\sin \beta - \sin \alpha)^2 \\
     &= (\cos^2 \alpha - 2 \cos \alpha \cos \beta + \cos^2 \beta) + (\sin^2 \alpha - 2 \sin \alpha \sin \beta + \sin^2 \beta)  \\
     &= (\sin^2 \alpha + \cos^2 \alpha) + (\sin^2 \beta + \cos^2 \beta) - 2(\cos \alpha \cos \beta + \sin \alpha \sin \beta)\\
     &= 2 - 2(\cos \alpha \cos \beta + \sin \alpha \sin \beta)・・・②\\
\end{aligned}\\
\\
\begin{aligned}
①②より\\
&\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \\
\end{aligned}

cos(α+β)の証明

\\
\begin{array}{l}
\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \\
\\
上記に、\beta = -\beta, (\sin(- \beta) = - \sin \beta, \cos(- \beta) = \cos \beta) を代入 \\
\\
\cos(\alpha - (-\beta)) = \cos \alpha \cos (-\beta) + \sin \alpha \sin (-\beta) \\
\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \\
\end{array}

sin(α-β)の証明

\\
\begin{array}{l}
\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \\
\\
上記に、 \beta = \beta + \frac{\pi}{2} (\sin(\beta + \frac{\pi}{2}) = \cos \beta, \cos(\beta + \frac{\pi}{2}) = - \sin \beta) を代入 \\
\\
左辺に\beta = \beta + \frac{\pi}{2}を代入\\
\cos(\alpha - \beta) = \cos(\alpha - (\beta + \frac{\pi}{2})) = \cos((\alpha - \beta) - \frac{\pi}{2}) = \cos(\frac{\pi}{2} - (\alpha - \beta)) = \sin(\alpha - \beta)\\
\\
右辺に\beta = \beta + \frac{\pi}{2}を代入\\
\cos \alpha \cos \beta + \sin \alpha \sin \beta \\
  = \cos \alpha \cos (\beta + \frac{\pi}{2}) + \sin \alpha \sin (\beta + \frac{\pi}{2}) \\
  = - \cos \alpha \sin \beta + \sin \alpha \cos \beta \\
  = \sin \alpha \cos \beta - \cos \alpha \sin \beta \\
\\
\therefore \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta\\
\end{array}

sin(α+β)の証明

\\
\begin{array}{l}
\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \\
\\
上記に、\beta = -\beta (\sin(- \beta) = - \sin \beta, \cos(- \beta) = \cos = \beta) を代入 \\
\\
\sin(\alpha - (-\beta)) = \sin \alpha \cos (-\beta) - \cos \alpha \sin (-\beta) \\
\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \\
\end{array}

tan(α+β)の証明

\\
\begin{array}{ll}
\tan(\alpha + \beta) &= \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)}\\
&= \frac{\sin \alpha \cos \beta + \cos \alpha \sin \beta}{\cos \alpha \cos \beta - \sin \alpha \sin \beta}  ※\cos \alpha \cos \beta で割る\\
&= \frac{\frac{\sin \alpha \cos \beta}{\cos \alpha \cos \beta} + \frac{\cos \alpha \sin \beta}{\cos \alpha \cos \beta}}{\frac{\cos \alpha \cos \beta}{\cos \alpha \cos \beta} - \frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}} ※\frac{\sin \theta}{\cos \theta} = \tan \theta\\
&= \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} \\
\end{array}
\\

tan(α-β)の証明

\\
\begin{array}{ll}
\tan(\alpha - \beta) &= \frac{\sin(\alpha - \beta)}{\cos(\alpha - \beta)}\\
&= \frac{\sin \alpha \cos \beta - \cos \alpha \sin \beta}{\cos \alpha \cos \beta + \sin \alpha \sin \beta}  ※\cos \alpha \cos \beta で割る\\
&= \frac{\frac{\sin \alpha \cos \beta}{\cos \alpha \cos \beta} - \frac{\cos \alpha \sin \beta}{\cos \alpha \cos \beta}}{\frac{\cos \alpha \cos \beta}{\cos \alpha \cos \beta} + \frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}} ※\frac{\sin \theta}{\cos \theta} = \tan \theta\\
&= \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta} \\
\end{array}
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?