1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

数学-三角関数-余弦定理の証明

Last updated at Posted at 2018-08-22

余弦定理の証明

戻る

角Aが鋭角の場合

  • 頂点Cから辺ABに垂線を下ろし、交点をHとする。
\\
\begin{array}{l}
直角三角形 \triangle ACH において、\\
CH = b \sin A \\
AH = b \cos A \\
となる。\\
\end{array}
\\
直角三角形 \triangle BCH において三平方の定理より、\\
\begin{array}{rl}
BC^2 &= CH^2 + BH^2 = CH^2 + (AB - AH)^2\\
a^2 &= (b \sin A)^2 + (c - b \cos A)^2\\
    &= (b^2 \sin^2 A) + (c^2 -2bc \cos A + b^2 \cos^2 A)\\
    &= b^2(\sin^2 A + \cos^2 A) + c^2 - 2bc \cos A\\
    &= b^2 + c^2 - 2bc \cos A\\
\end{array}

上へ

角Aが直角の場合

  • $\angle A$ が直角の場合
\\
\begin{array}{l}
&\cos A = \cos \frac{\pi}{2} = 0 \\
\\
&三平方の定理より、\\
&a^2 = b^2 + c^2\\
\\
&a^2  = b^2 + c^2 = b^2 + c^2 -2bc \cos A\\
\end{array}

上へ

角Aが鈍角の場合

  • 頂点Cから辺ABの延長上に垂線を下ろし、交点をHとする。
\\
\begin{array}{l}
直角三角形 \triangle ACH において、\\
CH = b \sin(\pi - A) = b \sin A \\
AH = b \cos(\pi - A) = -b \cos A \\
となる。\\
\end{array}
\\
直角三角形 \triangle BCH において三平方の定理より、\\
\begin{array}{rl}
BC^2 &= CH^2 + BH^2 = CH^2 + (AB + AH)^2\\
a^2 &= (b \sin A)^2 + (c - b \cos A)^2\\
&= b^2 \sin^2 A + c^2 -2bc \cos A + b^2 \cos^2 A\\
&= b^2(\sin^2 A + \cos^2 A) + c^2 - 2bc \cos A\\
&= b^2 + c^2 - 2bc \cos A\\
\end{array}

上へ

1
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?