3
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

【翻訳】Minimally Sufficient Pandas(エッセンシャル版)

Last updated at Posted at 2019-02-15

Overview

この記事は
pandasクックブック-―Pythonによるデータ処理のレシピ の著者である Ted Petrou 氏の以下の記事、

Minimally Sufficient Pandas

の一部を、許可を得て翻訳したものです。
https://twitter.com/arc279/status/1095511875050033152

全文は「何故そうしたほうが良いのか?」などにも詳しく言及していて長文のため、具体例だけ先に訳しました。
詳しい理由などは元記事を参照してください。
元記事の全文はこちらです。

不自然な点、間違っている点などがありましたら指摘してもらえると助かります。
リポジトリはここにあります。

以下、忙しい人のための意訳です。


カラム(Series)の選択にドット表記を使わない。ブラケット表記を使う。

  • OK) df[“count”]
  • NG) df.count

ix メソッドは使わない

  • ラベルで参照する時は loc を使う
  • インデックスで参照する時は iloc を使う

at iat は使わない

loc iloc より若干速いが、単一セルの参照にパフォーマンスを気にするなら numpy.array に変換した方がよい

read_table は使わない

  • 同じ機能を複数の方法で実現できるのは混乱するので良くない
  • read_csv のデリミタを指定する

na と null

  • isnaisnull は同じ
  • notnanotnull も同じ
    • isna notna を使う
    • fillna dropna との整合が取れる

算術、比較メソッドは必要な時以外使わない

  • 通常は演算子を使用する
  • axis を指定する必要がある場合だけメソッドを使う

python 組み込みと同名のメソッドは pandas のメソッドを使用する

pandas のメソッドはcで実装されたメソッドを呼んでるので速い。(absだけは同じ)

  • OK) df.sum(), df.min(), df.max(), df.abs()
  • NG) sum(df), min(df), max(df), abs(df)

groupby の集計の書き方の統一

df.groupby('grouping column').agg({'aggregating column': 'aggregating function'}) 方式を使う

(訳注)dictの順序を保持しない python3.6 未満だとカラムの追加される順序が不定になるので注意

MultiIndex の扱い方

  • 非常に扱いが複雑になるので使わないほうが良い(若干のパフォーマンス向上と引換に)
  • 単一インデックスに直して扱うと良い(reset_index()を使う)

groupby, pivot_table, crosstab の違い

  • 具体例見た方が早い
  • 本質的には同じことをやってる
  • groupby: 結果が MultiIndex になる
  • pivot_table: 結果が Single Index + 「集計列のユニーク値」の列になる
    • グループを比較する時は pivot_table を使う
  • groupby は計算の途中経過、pivot_table は計算結果、と解釈すると良いのでは
  • crosstab はカウント用途
    • pivot_table とできることは同じ
    • normalize パラメータで正規化できる
    • 相対頻度を見る時に crosstab を使う

pivot メソッド

  • データを整形(縦横の変換)
  • 集約はしない。値の重複があるとエラーになる。
  • pivot は使わず pivot_table の使用を検討したほうが良い。

melt メソッド と stack メソッド

  • 具体例見た方が早い
  • 横持ちのデータを縦持ちに変換
  • melt: インデックスが列に移動するので set_index してやる必要がある
  • stack: 縦持ちの種別に指定した列をindexとして扱う
  • stack より melt を使う(MultiIndexを避け列名も指定できる)

pivot メソッド と unstack メソッド

  • 具体例見た方が早い
  • MultiIndex の縦持ちのデータを横持ちに変換
  • 列が MultiIndex になる
  • 代わりに pivot_table を使ったほうが良い
3
3
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
3
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?