15
Help us understand the problem. What are the problem?

More than 3 years have passed since last update.

posted at

Organization

【Deep Learningメモ】Jupyter NotebookでのGPU情報の確認方法

Jupyter Notebook上でGPUの情報を確認する方法を記載します.

目次

  • 1. 実行環境
  • 2. 各種確認
    • 2.1. TensorFlowのライブラリからデバイス設定を確認
    • 2.2. GPUの種類確認
    • 2.3. Cudaのバージョン確認
    • 2.4. GPUの使用状況確認
    • 2.5. NVIDIA DRIVERのバージョン確認
  • 3. 補足
  • 4. 参考リンク

1. 実行環境

2. 各種確認

2.1. TensorFlowのライブラリからデバイス設定を確認

from tensorflow.python.client import device_lib
device_lib.list_local_devices()
[name: "/device:CPU:0"
 device_type: "CPU"
 memory_limit: 268435456
 locality {
 }
 incarnation: 8738958628955863132, name: "/device:GPU:0"
 device_type: "GPU"
 memory_limit: 11285974221
 locality {
   bus_id: 1
   links {
   }
 }
 incarnation: 17652009205189153751
 physical_device_desc: "device: 0, name: Tesla K80, pci bus id: 0000:00:1e.0, compute capability: 3.7"]

CPUが利用できることを確認できた.

2.2. GPUの種類確認

%%bash
lspci | grep -i nvidia
00:1e.0 3D controller: NVIDIA Corporation GK210GL [Tesla K80] (rev a1)

Tesla K80が確認出来る

2.3. Cudaのバージョン確認

%%bash
nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2017 NVIDIA Corporation
Built on Fri_Sep__1_21:08:03_CDT_2017
Cuda compilation tools, release 9.0, V9.0.176

Cudaのバージョンは9.0

2.4. GPUの使用状況確認

%%bash
nvidia-smi
Mon Jul  9 23:09:59 2018       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 384.111                Driver Version: 384.111                   |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Tesla K80           On   | 00000000:00:1E.0 Off |                    0 |
| N/A   44C    P0    70W / 149W |  10875MiB / 11439MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|    0      7302      C   ...naconda3/envs/tensorflow_p27/bin/python 10862MiB |
+-----------------------------------------------------------------------------+

2.5. NVIDIA DRIVERのバージョン確認

%%bash
cat /proc/driver/nvidia/version
NVRM version: NVIDIA UNIX x86_64 Kernel Module  384.111  Tue Dec 19 23:51:45 PST 2017
GCC version:  gcc version 7.2.1 20170915 (Red Hat 7.2.1-2) (GCC)

3. 補足

Jupyter Notebookでlinux commandは下記の通り実行できます.
当たり前ですが,どちらも出力結果は同じ.

実行方法1

%%bash
nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2017 NVIDIA Corporation
Built on Fri_Sep__1_21:08:03_CDT_2017
Cuda compilation tools, release 9.0, V9.0.176

実行方法2

!nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2017 NVIDIA Corporation
Built on Fri_Sep__1_21:08:03_CDT_2017
Cuda compilation tools, release 9.0, V9.0.176

4. 参考リンク

Why not register and get more from Qiita?
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away
Sign upLogin
15
Help us understand the problem. What are the problem?