0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

エンジニアリングと微分・積分の結びつき

Last updated at Posted at 2025-09-14

近似式

  • ある時刻 $t_0$ の値を初期値とすると、次の時刻 $t_1 = t_0 + \Delta t$ での値は

$$
f(t_1) \approx f(t_0) + f'(t_0) \cdot \Delta t
$$

となる。

  • 同様に

$$
f(t_2) \approx f(t_1) + f'(t_1) \cdot \Delta t
$$

$$
f(t_3) \approx f(t_2) + f'(t_2) \cdot \Delta t
$$

と逐次的に未来を予測できる。


未来を予測する式(積分形)

$$
f(t_1) = f(t_0) + \int_{t_0}^{t_1} f'(t) , dt
$$

これは 「未来の値 = 初期値 + 傾きの積分」 という関係を示す。


工学的な意味

  • 微分方程式
    各点での「傾き」$f'(t)$ が対象の振る舞いを表す物理法則。
    例:力学の運動方程式、電気回路の微分方程式。

  • 微分
    傾きを調べる操作。
    例:速度 = 位置の時間微分、電流 = 電荷の時間微分。

  • 積分
    傾き(微分方程式)をもとにグラフ全体を構成する操作。
    例:位置 = 速度の積分、電荷 = 電流の積分。



import numpy as np
import matplotlib.pyplot as plt

# ================= Parameters =================
fs = 100          # Sampling frequency [Hz]
fin = 2           # Input sine frequency [Hz]
N = 200           # Number of samples
dt = 1.0 / fs     # Sampling interval
t = np.arange(N) * dt  # Time axis

# ================= True sine wave =================
f_true = np.sin(2 * np.pi * fin * t)

# ================= Derivative (analytical) =================
# df/dt = 2πf cos(2πft)
f_deriv = 2 * np.pi * fin * np.cos(2 * np.pi * fin * t)

# ================= Future prediction (Euler method) =================
f_pred = np.zeros(N)
f_pred[0] = 0.0  # initial value f(0)=0

for n in range(N - 1):
    f_pred[n+1] = f_pred[n] + f_deriv[n] * dt  # Euler step

# ================= Plot =================
plt.figure(figsize=(10,6))
plt.plot(t, f_true, label="True sine wave", linewidth=2)
plt.plot(t, f_pred, 'r--', label="Predicted (Euler)", linewidth=2)
plt.xlabel("Time [s]")
plt.ylabel("Amplitude")
plt.title("Future Prediction by Euler vs True Sine Wave")
plt.legend()
plt.grid(True)
plt.show()

image.png

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?