10
6

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

【画像処理】NumpyでHarisのコーナー検出

Posted at

NumpyでHarisのコーナー検出を実装してみます。

コーナーを検出する画像を読み込みます。

import numpy as np
import matplotlib.pyplot as plt

original_image = plt.imread(image_name)
if np.issubdtype(original_image.dtype, np.integer):
  original_image = original_image / np.iinfo(original_image.dtype).max
gray_image = 0.2116 * original_image[:,:,0] + 0.7152 * original_image[:,:,1] + 0.0722 * original_image[:,:,2]
plt.imshow(gray_image, cmap='gray')

GrayImage.png

画像にフィルターを畳み込む関数を定義します。詳細は以下の記事を参照してください。
【画像処理】Numpyで空間フィルタリング(畳み込み演算) - Qiita

def _convolve2d(image, kernel):
  shape = (image.shape[0] - kernel.shape[0] + 1, image.shape[1] - kernel.shape[1] + 1) + kernel.shape
  strides = image.strides * 2
  strided_image = np.lib.stride_tricks.as_strided(image, shape, strides)
  return np.einsum('kl,ijkl->ij', kernel, strided_image)

def _convolve2d_multichannel(image, kernel):
  convolved_image = np.empty((image.shape[0] - kernel.shape[0] + 1, image.shape[1] - kernel.shape[1] + 1, image.shape[2]))
  for i in range(image.shape[2]):
    convolved_image[:,:,i] = _convolve2d(image[:,:,i], kernel)
  return convolved_image

def _pad_singlechannel_image(image, kernel_shape, boundary):
  return np.pad(image, ((int(kernel_shape[0] / 2),), (int(kernel_shape[1] / 2),)), boundary)

def _pad_multichannel_image(image, kernel_shape, boundary):
  return  np.pad(image, ((int(kernel_shape[0] / 2),), (int(kernel_shape[1] / 2),), (0,)), boundary)

def convolve2d(image, kernel, boundary='edge'):
  if image.ndim == 2:
    pad_image = _pad_singlechannel_image(image, kernel.shape, boundary) if boundary is not None else image
    return _convolve2d(pad_image, kernel)
  elif image.ndim == 3:
    pad_image = _pad_multichannel_image(image, kernel.shape, boundary) if boundary is not None else image
    return _convolve2d_multichannel(pad_image, kernel)

Sobelフィルターで横方向、縦方向の勾配画像$I_x$、$I_y$をそれぞれ作成します。

sobel_x_kernel = np.array([[-1, 0, 1],
                           [-2, 0, 2],
                           [-1, 0, 1]])
sobel_x_image = convolve2d(gray_image, sobel_x_kernel)
value_range = max(abs(sobel_x_image.min()), abs(sobel_x_image.max()))
plt.imshow(sobel_x_image, cmap='bwr', vmin=-value_range, vmax=value_range)
plt.colorbar()

SobelXImage.png

sobel_y_kernel = np.array(([[1, 2, 1],
                            [0, 0, 0],
                            [-1, -2, -1]]))
sobel_y_image = convolve2d(gray_image, sobel_y_kernel)
value_range = max(abs(sobel_y_image.min()), abs(sobel_y_image.max()))
plt.imshow(sobel_y_image, cmap='bwr', vmin=-value_range, vmax=value_range)
plt.colorbar()

SobelYImage.png

勾配画像から$I_{xx}=I_x\cdot I_x$、$I_{yy}=I_y\cdot I_y$、$I_{xy}=I_x\cdot I_y$を求めます。

sobel_x2_image = sobel_x_image ** 2
plt.imshow(sobel_x2_image, cmap='gray')
plt.colorbar()

SobelX2Image.png

sobel_y2_image = sobel_y_image ** 2
plt.imshow(sobel_y2_image, cmap='gray')
plt.colorbar()

SobelY2Image.png

sobel_xy_image = sobel_x_image * sobel_y_image
value_range = max(abs(sobel_xy_image.min()), abs(sobel_xy_image.max()))
plt.imshow(sobel_xy_image, cmap='bwr', vmin=-value_range, vmax=value_range)
plt.colorbar()

SobelXyImage.png

$I_{xx}$、$I_{yy}$、$I_{xy}$から局所領域で平均化した画像$S_{xx}$、$S_{yy}$、$S_{xy}$をそれぞれ作成します。ここではガウシアンフィルターを使用しています。ガウシアンフィルターについては以下の記事を参照してください。
【画像処理】Numpyで平滑化フィルター - Qiita

gaussian_sobel_x2_image = convolve2d(sobel_x2_image, gaussian_kernel)
plt.imshow(gaussian_sobel_x2_image, cmap='gray')
plt.colorbar()

GaussianSobelX2Image.png

gaussian_sobel_y2_image = convolve2d(sobel_y2_image, gaussian_kernel)
plt.imshow(gaussian_sobel_y2_image, cmap='gray')
plt.colorbar()

GaussianSobelY2Image.png

gaussian_sobel_xy_image = convolve2d(sobel_xy_image, gaussian_kernel)
value_range = max(abs(gaussian_sobel_xy_image.min()), abs(gaussian_sobel_xy_image.max()))
plt.imshow(gaussian_sobel_xy_image, cmap='bwr', vmin=-value_range, vmax=value_range)
plt.colorbar()

GaussianSobelXYImage.png

画素$(x,y)$における行列$\boldsymbol{M}$を次のように定義して$R$を求めます。この$R$が一定値以上であれば、その画素をコーナーとみなすことができます。

\boldsymbol{M}(x,y)=
\begin{bmatrix}
S_{xx}(x,y) & S_{xy}(x,y) \\
S_{xy}(x,y) & S_{yy}(x,y) \\
\end{bmatrix} \\
R=det\boldsymbol{M} - k(tr\boldsymbol{M})^2
m = np.stack([np.dstack((gaussian_sobel_x2_image, gaussian_sobel_xy_image)),
              np.dstack((gaussian_sobel_xy_image, gaussian_sobel_y2_image))], axis=-1)
det_m = np.linalg.det(m)
tr_m = np.trace(m, axis1=2, axis2=3)
k = 0.06
r = det_m - k * (tr_m ** 2)
plt.imshow(r)
plt.colorbar()

RImage.png

$R$が一定以上の値の箇所を抽出して、そこに円を描画します。円の描画については以下の記事を参照してください。
【画像処理】Numpyで図形描画 - Qiita

def fill_circle(image, color, center, radius):
  coord = np.fromfunction(lambda y, x: np.dstack((y + 0.5, x + 0.5)), image.shape[:2])
  dist2 = (coord[:,:,1] - center[0]) ** 2 + (coord[:,:,0] - center[1]) ** 2
  condition = dist2 <= radius ** 2
  if image.ndim == 3:
    condition = np.tile(condition.reshape(condition.shape + (1,)), (1, 1, image.shape[2]))
  return np.where(condition, color, image)

corners = np.where(r > 1.0)
corner_image = original_image
for coord in list(zip(corners[1], corners[0])):
  corner_image = fill_circle(corner_image, np.array([1.0, 0.0, 1.0]), coord, 3.0)
plt.imshow(corner_image)

CornerImage.png

1つのコーナー付近で複数の検出があるので、$R$が局所最大となる画素のみを残します。

def is_local_maximum(image, size=(5, 5), boundary='edge'):
  pad_image = np.pad(image, ((int(size[0] / 2),), (int(size[1] / 2),)), boundary)
  areas = np.lib.stride_tricks.as_strided(pad_image, r.shape + size, pad_image.strides * 2)
  local_maximum = np.max(areas, axis=(2, 3))
  return image == local_maximum

corners = np.where(is_local_maximum(r) & (r > 1.0))
corner_image = original_image
for coord in list(zip(corners[1], corners[0])):
  corner_image = fill_circle(corner_image, np.array([1.0, 0.0, 1.0]), coord, 3.0)
plt.imshow(corner_image)

CornerLocalMaxImage.png

以上、Harisのコーナー検出によりコーナーを検出することができました。


これまでの操作をまとめて一つの関数にします。

def detect_corners_by_haris(image, threshold, k=0.06, gaussian_size=(5, 5), gaussian_sigma=1, local_maximum_size=(5, 5)):
  dx = convolve2d(image, np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]))
  dy = convolve2d(image, np.array(([[1, 2, 1], [0, 0, 0], [-1, -2, -1]])))
  dx2 = dx ** 2
  dy2 = dy ** 2
  dxy = dx * dy
  gauss_kernel = create_gaussian_kernel(size=gaussian_size, sigma=gaussian_sigma)
  gdx2 = convolve2d(dx2, gauss_kernel)
  gdy2 = convolve2d(dy2, gauss_kernel)
  gdxy = convolve2d(dxy, gauss_kernel)
  m = np.stack([np.dstack((gdx2, gdxy)), np.dstack((gdxy, gdy2))], axis=-1)
  det_m = np.linalg.det(m)
  tr_m = np.trace(m, axis1=2, axis2=3)
  r = det_m - k * (tr_m ** 2)
  return np.where(is_local_maximum(r, size=local_maximum_size) & (r > threshold))

def draw_circles(image, coordinates, color, radius):
  for coordinate in list(zip(coordinates[1], coordinates[0])):
    image = fill_circle(image, color, coordinate, radius)
  return image

corners = detect_corners_by_haris(gray_image, 1.0)
corner_image = draw_circles(original_image, corners, np.array([1.0, 0.0, 1.0]), 3.0)
plt.imshow(corner_image)

CornerLocalMaxImage.png


実装したコードはGoogle Colaboratoryに置いてあります。

10
6
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
10
6

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?