0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

統計検定準1級・第9章の分散の区間推定の導出

Posted at

分散の区間推定

 確率変数 $X$ が $N(\mu, \sigma^2)$ に従うとする. 母分散 $\sigma^2$ の区間推定について考える. ここで, 母平均 $\mu$ は未知とする.

 $N(\mu, \sigma^2)$ からの独立な標本 $X_1,X_2,...,X_n$ の標本平均 $\bar{X}$ からの偏差平方和を $T^2 = \sum_{i=1}^{n} (X_i - \bar{X})^2$ とする. $\chi^2 = T^2/\sigma^2$ は自由度 $n-1$ のカイニ乗分布に従う.

証明

\begin{align}
\chi^2 &= \frac {T^2} {\sigma^2} \\
&= \frac {\sum_{i=1}^{n} (X_i - \bar{X})^2} {\sigma^2} \\
&= \frac {\sum_{i=1}^{n} (X_i - \mu + \mu  - \bar{X})^2} {\sigma^2} \\
&= \frac {\sum_{i=1}^{n} (X_i - \mu)^2 + 2\sum_{i=1}^{n} (X_i - \mu)(\mu  - \bar{X}) + \sum_{i=1}^{n}(\mu  - \bar{X})^2} {\sigma^2} \\
&= \frac {\sum_{i=1}^{n} (X_i - \mu)^2 - n(\mu  - \bar{X})^2} {\sigma^2} \\
&= \sum_{i=1}^{n} (\frac {X_i - \mu} {\sigma})^2 - (\frac {\bar{X} - \mu} {\sigma/\sqrt{n}})^2 
\end{align}

$$
\frac {X_i - \mu} {\sigma} \sim N(0,1) より, \sum_{i=1}^{n} (\frac {X_i - \mu} {\sigma})^2 \sim \chi^2(n)
$$

$$
\frac {\bar{X} - \mu} {\sigma/\sqrt{n}} \sim N(0,1) より, (\frac {\bar{X} - \mu} {\sigma/\sqrt{n}})^2 \sim \chi^2(1)
$$

したがって, カイニ乗分布の再生性より, $\chi^2 = T^2/\sigma^2$ は自由度 $n-1$ のカイニ乗分布に従う.

カイニ乗分布の上側2.5%点 $\chi^2_{0.025}(n-1)$ および上側97.5%点 $\chi^2_{0.975}(n-1)$ から, 以下の確率式が成り立つ.

$$
P(\chi^2_{0.975}(n-1) \leq \chi^2 \leq \chi^2_{0.025}(n-1)) = 0.95
$$

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?