0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

統計検定準1級・第11章 1 標本の平均の検定の導出

Last updated at Posted at 2025-06-03

1 標本の平均の検定

分散 $\sigma^2$ は未知とする. 標本分散 $s^2 = \frac {1} {n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$ で $\sigma^2$ を推定する. $\frac {(n-1)s^2} {\sigma^2} = \frac {\sum_{i=1}^{n}(X_i - \bar{X})^2} {\sigma^2}$ は自由度 $n-1$ のカイニ乗分布に従う.

帰無仮説 $H_0 : \mu = \mu_0$ のもとで, 検定統計量 $T = \frac {\bar{X} - \mu_0} {s/\sqrt{n}}$ は自由度 $n-1$ の $t$ 分布に従う.

証明

\begin{align}
\frac {\bar{X} - \mu_0} {\frac {s} {\sqrt{n}}} &= \frac {(\bar{X} - \mu)\sqrt{n}} {s} \\ 
&= \frac {\frac {(\bar{X} - \mu_0)} {\frac {1} {\sqrt{n}}}} {s} \\
&= \frac {\frac {(\bar{X} - \mu_0)} {\frac {\sigma} {\sqrt{n}}}} {\frac {s} {\sigma}} \\
&= \frac {\frac {(\bar{X} - \mu_0)} {\frac {\sigma} {\sqrt{n}}}} {\sqrt{\frac {s^2} {\sigma^2}}} \\
&= \frac {\frac {(\bar{X} - \mu_0)} {\frac {\sigma} {\sqrt{n}}}} {\sqrt{\frac {(n-1)s^2} {\sigma^2(n-1)}}} \\
\end{align}

$$
\frac {(\bar{X} - \mu)} {\frac {\sigma} {\sqrt{n}}} \sim N(0,1)
$$

$$
\frac {(n-1)s} {\sigma} \sim \chi^2(n-1)
$$

よってT分布の定義

$$
T = \frac {Z} {\sqrt{\frac {Y} {n}}}, Z \sim N(0,1), Y \sim \chi^2(n)
$$

から, $T = \frac {\bar{X} - \mu_0} {s/\sqrt{n}}$ は自由度 $n-1$ の $t$ 分布に従う.

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?