はじめに
今日(7/8)、Snowflake Discoverという6月のサンフランシスコでのSummitのキャッチアップイベントがオンラインであったので参加しました。
明日のDay2も参加する気満々だったのですが、一日打ち合わせで埋まってしまい参加できなくなり残念。
あとでオンデマンドで見れるようにならないかなー。
QuickStartを見ながらやってみた
今日の最後のセッションで、Snowflakeの公式ドキュメントを自然言語で質問して結果を返してくれるチャットみたいなのを紹介されていたのでやってみました。
Getting Started with Cortex Knowledge Extensions on Snowflake Marketplace
Marketplaceに「Snowflake Documentation」ってのがあって、データ化されてるようです。
早速やってみようとMarketPlaceで取得ボタンを押したら、AWS東京リージョンのSnowflakeアカウントでは取得できないようでした。
たまたまトライアルアカウントでAWSオレゴンリージョンのものがあるので、トライアルアカウントにチェンジして取得できました。
QuickStartの6ページ目からが実際手を動かすところになります。
確認用の以下のクエリで躓きました。
以下のエラーです。
select
snowflake.cortex.search_preview(
'.shared.cke_snowflake_docs_service',
'{ "query": "What is a table in Snowflake?", "columns": ["chunk","document_title", "source_url"] }');
399118 (XX000): クエリに失敗しました:error_code:390404、メッセージ:Cortex Search Service .shared.cke_snowflake_docs_service does not exist or access is not authorized for the current role. If you are using JWT authentication, the role will be the "DEFAULT_ROLE" of the current user。
SQLの方を見ると、
.shared.cke~~
となっています。
スキーマ名がsharedなんですが、DB名がなくて.から始まってますね。
ダメ元でDB名のsnowflake_documentationを入れたらエラー回避しました。
QuickStartの7ページ目で今度はStreamlitのコードを落としてきて貼り付けます。
貼り付けて実行を押すとエラーになりました。
ModuleNotFoundError: No module named 'snowflake.core'
'snowflake.core'がないとのことなので、コードの上のパッケージでsnowflake.coreと入力してインストールしたらエラー回避できました。
Streamlitのアプリが無事起動したので、QuickStartにある通り、「What is a view in Snowflake?」と質問したらちゃんと結果を返してくれました。また、公式ドキュメントのURLも教えてくれました。
次に日本語で聞いてみました。
「Snowflakeのビューって何ですか?」
あれ?日本語理解できてない?
これはTRANSLATE関数をかまして英語にするロジックを入れたらいけるかな?
Claude先生に元のソースを貼り付けて
「貼り付けたStreamlitのプログラムについてです。
Snowflake内のデータに対してプロンプトを投げて返してもらうものですが、日本語の入力はエラーになります。
日本語の場合はSnowflakeのTRANSLATE関数で英語翻訳してからCOMPLETE関数に渡すようにしたいです。
修正を手伝ってください。」
とお願いしたら1分くらいで作ってくれました。
Claude先生による日本語対応版(長いので折り畳みます)
import streamlit as st
from snowflake.core import Root # requires snowflake>=0.8.0
from snowflake.snowpark.context import get_active_session
import re
MODELS = [
"mistral-large",
"snowflake-arctic",
"llama3-70b",
"llama3-8b",
]
def init_messages():
"""
Initialize the session state for chat messages. If the session state indicates that the
conversation should be cleared or if the "messages" key is not in the session state,
initialize it as an empty list.
"""
if st.session_state.clear_conversation or "messages" not in st.session_state:
st.session_state.messages = []
def init_service_metadata():
"""
Initialize the session state for cortex search service metadata. Query the available
cortex search services from the Snowflake session and store their names and search
columns in the session state.
"""
if "service_metadata" not in st.session_state:
services = session.sql("SHOW CORTEX SEARCH SERVICES IN snowflake_documentation.shared;").collect()
service_metadata = []
if services:
for s in services:
svc_name = s["name"]
svc_search_col = session.sql(
f"DESC CORTEX SEARCH SERVICE snowflake_documentation.shared.{svc_name};"
).collect()[0]["search_column"]
service_metadata.append(
{"name": svc_name, "search_column": svc_search_col}
)
st.session_state.service_metadata = service_metadata
def init_config_options():
"""
Initialize the configuration options in the Streamlit sidebar. Allow the user to select
a cortex search service, clear the conversation, toggle debug mode, and toggle the use of
chat history. Also provide advanced options to select a model, the number of context chunks,
and the number of chat messages to use in the chat history.
"""
service_names = [s["name"] for s in st.session_state.service_metadata]
default_index = service_names.index("CKE_SNOWFLAKE_DOCS_SERVICE") if "CKE_SNOWFLAKE_DOCS_SERVICE" in service_names else 0
st.sidebar.selectbox(
"Select Cortex Knowledge Extension:",
service_names,
index=default_index,
key="selected_cortex_search_service",
)
st.sidebar.button("Clear conversation", key="clear_conversation")
st.sidebar.toggle("Debug", key="debug", value=False)
st.sidebar.toggle("Use chat history", key="use_chat_history", value=True)
with st.sidebar.expander("Advanced options"):
st.selectbox("Select model:", MODELS, key="model_name")
st.number_input(
"Select number of context chunks",
value=5,
key="num_retrieved_chunks",
min_value=1,
max_value=10,
)
st.number_input(
"Select number of messages to use in chat history",
value=5,
key="num_chat_messages",
min_value=1,
max_value=10,
)
# st.sidebar.expander("Session State").write(st.session_state)
def contains_japanese(text):
"""
Check if the text contains Japanese characters (Hiragana, Katakana, or Kanji).
Args:
text (str): The text to check for Japanese characters.
Returns:
bool: True if Japanese characters are found, False otherwise.
"""
japanese_pattern = re.compile(r'[\u3040-\u309F\u30A0-\u30FF\u4E00-\u9FAF]')
return bool(japanese_pattern.search(text))
def translate_to_english(text):
"""
Translate Japanese text to English using Snowflake's TRANSLATE function.
Args:
text (str): The Japanese text to translate.
Returns:
str: The translated English text.
"""
try:
# Use Snowflake's TRANSLATE function to translate from Japanese to English
result = session.sql("SELECT snowflake.cortex.translate(?, 'ja', 'en')", (text,)).collect()
translated_text = result[0][0]
if st.session_state.debug:
st.sidebar.text_area("Translation", f"Original (JP): {text}\nTranslated (EN): {translated_text}", height=150)
return translated_text
except Exception as e:
st.error(f"Translation failed: {str(e)}")
return text # Return original text if translation fails
def translate_to_japanese(text):
"""
Translate English text to Japanese using Snowflake's TRANSLATE function.
Args:
text (str): The English text to translate.
Returns:
str: The translated Japanese text.
"""
try:
# Use Snowflake's TRANSLATE function to translate from English to Japanese
result = session.sql("SELECT snowflake.cortex.translate(?, 'en', 'ja')", (text,)).collect()
translated_text = result[0][0]
if st.session_state.debug:
st.sidebar.text_area("Response Translation", f"Original (EN): {text}\nTranslated (JP): {translated_text}", height=150)
return translated_text
except Exception as e:
st.error(f"Response translation failed: {str(e)}")
return text # Return original text if translation fails
def query_cortex_search_service(query):
"""
Query the selected cortex search service with the given query and retrieve context documents.
Display the retrieved context documents in the sidebar if debug mode is enabled.
Return the context documents as a string along with citation information.
Args:
query (str): The query to search the cortex search service with.
Returns:
tuple: (context_str, citations) where context_str is the concatenated string of context documents
and citations is a list with a single citation from the first result.
"""
# Translate query to English if it contains Japanese
original_query = query
if contains_japanese(query):
query = translate_to_english(query)
if st.session_state.debug:
st.sidebar.text("Query translated to English for search")
db, schema = 'snowflake_documentation', 'shared'
cortex_search_service = (
root.databases[db]
.schemas[schema]
.cortex_search_services[st.session_state.selected_cortex_search_service]
)
# Modify to retrieve additional columns for citations
context_documents = cortex_search_service.search(
query,
columns=["chunk", "document_title", "source_url"],
limit=st.session_state.num_retrieved_chunks
)
results = context_documents.results
service_metadata = st.session_state.service_metadata
search_col = [s["search_column"] for s in service_metadata
if s["name"] == st.session_state.selected_cortex_search_service][0]
context_str = ""
citations = []
if st.session_state.debug:
st.write("Available keys in first result:", list(results[0].keys()) if results else "No results")
st.write("Expected search column:", search_col)
for i, r in enumerate(results):
# Add debug output
if st.session_state.debug:
st.write(f"Result {i+1}:", r)
# Try to get the content using the search column name
content = None
for col_name in [search_col, "chunk", "CHUNK", "content", "CONTENT"]:
if col_name in r:
content = r[col_name]
break
if content is None:
if st.session_state.debug:
st.error(f"Could not find content in result {i+1}. Available keys: {list(r.keys())}")
content = f"Content not found - available keys: {list(r.keys())}"
# Add to context string
context_str += f"Context document {i+1}: {content} \n" + "\n"
# Only create one citation from the first result
if results:
first_result = results[0]
citations = [{
"index": 1,
"title": first_result.get("document_title", "Unknown Title"),
"source": first_result.get("source_url", "Unknown Source")
}]
if st.session_state.debug:
st.sidebar.text_area("Context documents", context_str, height=500)
return context_str, citations
def get_chat_history():
"""
Retrieve the chat history from the session state limited to the number of messages specified
by the user in the sidebar options.
Returns:
list: The list of chat messages from the session state.
"""
start_index = max(
0, len(st.session_state.messages) - st.session_state.num_chat_messages
)
return st.session_state.messages[start_index : len(st.session_state.messages) - 1]
def complete(model, prompt):
"""
Generate a completion for the given prompt using the specified model.
Args:
model (str): The name of the model to use for completion.
prompt (str): The prompt to generate a completion for.
Returns:
str: The generated completion.
"""
return session.sql("SELECT snowflake.cortex.complete(?,?)", (model, prompt)).collect()[0][0]
def make_chat_history_summary(chat_history, question):
"""
Generate a summary of the chat history combined with the current question to extend the query
context. Use the language model to generate this summary.
Args:
chat_history (str): The chat history to include in the summary.
question (str): The current user question to extend with the chat history.
Returns:
str: The generated summary of the chat history and question.
"""
# Translate question to English if it contains Japanese
if contains_japanese(question):
question = translate_to_english(question)
prompt = f"""
[INST]
Based on the chat history below and the question, generate a query that extend the question
with the chat history provided. The query should be in natural language.
Answer with only the query. Do not add any explanation.
<chat_history>
{chat_history}
</chat_history>
<question>
{question}
</question>
[/INST]
"""
summary = complete(st.session_state.model_name, prompt)
if st.session_state.debug:
st.sidebar.text_area(
"Chat history summary", summary.replace("$", "\$"), height=150
)
return summary
def create_prompt(user_question):
"""
Create a prompt for the language model by combining the user question with context retrieved
from the cortex search service and chat history (if enabled). Format the prompt according to
the expected input format of the model.
Args:
user_question (str): The user's question to generate a prompt for.
Returns:
tuple: (prompt, citations, is_japanese) where prompt is the generated prompt for the language model,
citations is the list of citation information, and is_japanese indicates if the original question was in Japanese.
"""
is_japanese = contains_japanese(user_question)
translated_question = user_question
# Translate question to English if it contains Japanese
if is_japanese:
translated_question = translate_to_english(user_question)
if st.session_state.use_chat_history:
chat_history = get_chat_history()
if chat_history != []:
question_summary = make_chat_history_summary(chat_history, user_question)
prompt_context, _ = query_cortex_search_service(question_summary) # Context from modified query
_, citations = query_cortex_search_service(user_question) # Citations from original query
else:
prompt_context, citations = query_cortex_search_service(user_question)
else:
prompt_context, citations = query_cortex_search_service(user_question)
chat_history = ""
# Create prompt with translated question
prompt = f"""
[INST]
You are a helpful AI chat assistant with RAG capabilities. When a user asks you a question,
you will also be given context provided between <context> and </context> tags. Use that context
with the user's chat history provided in the between <chat_history> and </chat_history> tags
to provide a summary that addresses the user's question. Ensure the answer is coherent, concise,
and directly relevant to the user's question.
If the user asks a generic question which cannot be answered with the given context or chat_history,
just say "I don't know the answer to that question." Do not provide any citations at all, ever, in this case.
Don't say things like "according to the provided context".
<chat_history>
{chat_history}
</chat_history>
<context>
{prompt_context}
</context>
<question>
{translated_question}
</question>
[/INST]
Answer:
"""
return prompt, citations, is_japanese
def main():
st.title(f":snowflake: Chat With Snowflake Documentation")
init_service_metadata()
init_config_options()
init_messages()
icons = {"assistant": "❄️", "user": "👤"}
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"], avatar=icons[message["role"]]):
st.markdown(message["content"])
disable_chat = (
"service_metadata" not in st.session_state
or len(st.session_state.service_metadata) == 0
)
if question := st.chat_input("Ask a question...", disabled=disable_chat):
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": question})
# Display user message in chat message container
with st.chat_message("user", avatar=icons["user"]):
st.markdown(question.replace("$", "\$"))
# Display assistant response in chat message container
with st.chat_message("assistant", avatar=icons["assistant"]):
message_placeholder = st.empty()
question = question.replace("'", "")
with st.spinner("Thinking..."):
# Get the prompt, citations, and language info from create_prompt
prompt, citations, is_japanese = create_prompt(question)
# Only pass the prompt to the complete function
generated_response = complete(st.session_state.model_name, prompt)
# Translate response back to Japanese if the original question was in Japanese
if is_japanese:
generated_response = translate_to_japanese(generated_response)
# Check if the response indicates the question wasn't answered
no_answer_phrases = [
"I don't know the answer",
"I cannot answer",
"I'm not sure",
"I don't have enough information",
"I'm unable to answer",
"I cannot provide",
"I don't have access to",
"I'm not able to",
"I cannot find",
"I don't understand",
"I cannot determine",
# Japanese equivalents
"わからない",
"答えられない",
"分からない",
"回答できない",
"不明",
"知らない"
]
# Check if the response contains any of these phrases (case-insensitive)
response_lower = generated_response.lower()
has_no_answer = any(phrase.lower() in response_lower for phrase in no_answer_phrases)
# Generate citations table in markdown
if citations and not has_no_answer:
citation_table = "\n\n##### Citation\n\n"
citation_table += "| Index | Title | Source |\n"
citation_table += "|-------|-------|--------|\n"
for citation in citations:
citation_table += f"| {citation['index']} | {citation['title']} | {citation['source']} |\n"
# Show full response with citation in current message
full_response = f"{generated_response}\n{citation_table}"
message_placeholder.markdown(full_response)
else:
message_placeholder.markdown(generated_response)
# Store only the response without citations in session state
st.session_state.messages.append(
{"role": "assistant", "content": generated_response} # No citation table stored
)
if __name__ == "__main__":
session = get_active_session()
root = Root(session)
main()
日本語を理解できるようになって、結果も日本語で返してくれました。
おわり
これでドキュメントを読むよりも要約した説明が得られます。
ただ、トライアルアカウントなのでもうじき使えなくなりますが。
問題は自分がStreamlitのpythonコードを全く理解せずに貼り付け&Claudeに修正依頼しただけというところ。
コードなんもわからんです。