5
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

組合せ最適化で凸多角形の最適三角形分割

Last updated at Posted at 2017-12-11

これなに

数学とコンピュータ・アドベントカレンダーの11日目の記事「凸多角形の最適三角形分割」を組合せ最適化で解いてみました。

考え方

凸N角形に交差しないように、N-3本の対角線を引けば、三角形分割できるので、和が最小のものを選べば良いです。

数理最適化の手順については、数独を通して組合せ最適化を学ぼうをご覧ください。

例題

適当に多角形を作ります。

python3
import matplotlib.pyplot as plt
import numpy as np, pandas as pd, networkx as nx
from pulp import LpProblem, lpDot, lpSum, value
from ortoolpy import addbinvars
plt.rcParams['figure.figsize'] = (4,4)
plt.axes().set_aspect('equal', 'datalim')

pos = np.array([[1,2],[2,0],[4,0],[6,1],[5,4],[4,5],[2,4]])
dcpos = dict(enumerate(pos))
n = len(pos)
g = nx.Graph()
g.add_edges_from([(i,(i+1)%n) for i in range(n)])
nx.draw_networkx(g,pos=dcpos)
plt.show()

image.png

変数表

変数表を作ります。

python3
a = pd.DataFrame([(i,j,np.linalg.norm(pos[i]-pos[j]))
    for i in range(n) for j in range(i+2,n-(i==0))], columns='I J Dist'.split())
a['Var'] = addbinvars(len(a))
a[:2]

|I|J|Dist|Var
:--|:--|:--|:--|:--
0|0|2|3.605551|v000001
1|0|3|5.099020|v000002

定式化して解く

制約条件は、N-3本必要というのと、交差させないになります。

python3
m = LpProblem()
m += lpDot(a.Dist, a.Var)
m += lpSum(a.Var) == n-3 # N-3本必要
for idx,(i1,j1,_,v1) in a.iterrows():
    for _,(i2,j2,_,v2)  in a[idx+1:].iterrows():
        if i1 < i2 < j1 < j2:
            m += v1+v2 <= 1 # 交差させない
m.solve()
a['Val'] = a.Var.apply(value)
print('対角線の和',value(m.objective))
g.add_edges_from(a[a.Val>0.5].values[:,:2])
nx.draw_networkx(g,pos=dcpos)
plt.show()
>>>
対角線の和 15.200792856081229

image.png

できました。

以上

5
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
5
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?