LoginSignup
21
25

More than 3 years have passed since last update.

Tensorflowのトレーニング済み.pb又はcheckpointからFull Integer Quantization(整数量子化)を施した軽量モデル(.tflite)を生成し、更にRaspberryPi4へUbuntu19.10 aarch64(64bit)を導入してCPUのみで高速に推論する

Last updated at Posted at 2019-12-28

PINTO_model_zoo GitHub stars

TensorflowLite-bin GitHub stars

Bazel_bin GitHub stars

1.Introduction

自力で Full Integer Quantization を実施してモデルのパフォーマンスを上げたいと常々考えています。 今回は、公式のチュートリアルを完全に無視して独自の Full Integer Quantization 手順を整理してみました。 公式のチュートリアルどおりに、 Freeze Graph -> Optimization -> saved_model形式へ変換 -> Post-process追加 -> Quantization の順に実施すると、Quantization の段階で、 カスタムオペレーションが含まれている場合に Check failed: dim_size >= 1 (0 vs. 1) エラーとなって変換に失敗します。 今回は敢えて Pipeline を通さずに、素のモデルをそのまま Quantization してパフォーマンスを計測してみたいと思います。 ただし、 Tensorflow Lite のパフォーマンスを最大化するため、 RaspberryPi4 には Raspbian ではなく、 Ubuntu 19.10 aarch64 (64bit) を導入して検証するという、かなりトリッキーな検証を行います。 検証の結果、 64bit Ubuntu では、 32bit Raspbian のおよそ4倍のパフォーマンスが得られました。 なお、この記事は Full Integer Quantization と パフォーマンスの計測 のみを行い、精度の検証は行いませんのであしからず。 公式のチュートリアルはKerasベースのものばかりで、トレーニング済みモデルから Quantization を行う手順がまとまっている記事を見つけることができませんでしたので、意地になって取り組みました。 いつも通り意味不明に、 Neural Compute Stick2 も EdgeTPU も使用せず、 CPU only の推論にこだわっています。

2.Environment

3.Procedure

下記の手順を順番に実施し、MobileNetV3-SSD のモデルを最終的に Full Integer Quantization します。 最後のキャリブレーション用データ・セットの生成処理が間違っているかもしれませんが、そこはご愛嬌で。 間違いにお気づきの方は、是非修正リクエストいただけますと嬉しいです。

3−1.Pre-environment preparation

Quantization 作業に必要となる必要最低限のパッケージを導入します。

$ cd ~
$ sudo pip3 install tensorflow-gpu==1.15.0
$ git clone --depth 1 https://github.com/tensorflow/models.git
$ cd models/research

$ git clone https://github.com/cocodataset/cocoapi.git
$ cd cocoapi/PythonAPI
$ make
$ cp -r pycocotools ../..
$ cd ../..
$ wget -O protobuf.zip https://github.com/google/protobuf/releases/download/v3.0.0/protoc-3.0.0-linux-x86_64.zip
$ unzip protobuf.zip
$ ./bin/protoc object_detection/protos/*.proto --python_out=.

$ sudo apt-get install -y protobuf-compiler python3-pil python3-lxml python3-tk
$ sudo -H pip3 install Cython contextlib2 jupyter matplotlib

3−2.Download Tensorflow official trained model

私の Google Drive に退避してある公式のトレーニング済み MobileNetV3-SSD のモデルをダウンロードして展開します。 Small版 と Large版 の2種類をダウンロードします。

$ export PYTHONPATH=${PWD}:${PWD}/object_detection:${PWD}/slim:${PYTHONPATH}

$ mkdir -p ssd_mobilenet_v3_small_coco_2019_08_14 && cd ssd_mobilenet_v3_small_coco_2019_08_14
$ curl -sc /tmp/cookie "https://drive.google.com/uc?export=download&id=1uqaC0Y-yRtzkpu1EuZ3BzOyh9-i_3Qgi" > /dev/null
$ CODE="$(awk '/_warning_/ {print $NF}' /tmp/cookie)"
$ curl -Lb /tmp/cookie "https://drive.google.com/uc?export=download&confirm=${CODE}&id=1uqaC0Y-yRtzkpu1EuZ3BzOyh9-i_3Qgi" -o ssd_mobilenet_v3_small_coco_2019_08_14.tar.gz
$ tar -zxvf ssd_mobilenet_v3_small_coco_2019_08_14.tar.gz
$ rm ssd_mobilenet_v3_small_coco_2019_08_14.tar.gz
$ cd ..

$ mkdir -p ssd_mobilenet_v3_large_coco_2019_08_14 && cd ssd_mobilenet_v3_large_coco_2019_08_14
$ curl -sc /tmp/cookie "https://drive.google.com/uc?export=download&id=1NGLjKRWDQZ_kibQHlLZ7Eetuuz1waC7X" > /dev/null
$ CODE="$(awk '/_warning_/ {print $NF}' /tmp/cookie)"
$ curl -Lb /tmp/cookie "https://drive.google.com/uc?export=download&confirm=${CODE}&id=1NGLjKRWDQZ_kibQHlLZ7Eetuuz1waC7X" -o ssd_mobilenet_v3_large_coco_2019_08_14.tar.gz
$ tar -zxvf ssd_mobilenet_v3_large_coco_2019_08_14.tar.gz
$ rm ssd_mobilenet_v3_large_coco_2019_08_14.tar.gz
$ cd ..

3−3.Create a conversion script from checkpoint format to saved_model format

モデルの最適化 と saved_model形式 への変換を一気に行うスクリプトを作成します。 ココが公式のチュートリアルには無い独自のシーケンスになります。

freeze_the_saved_model.py
import tensorflow as tf
import os
import shutil
from tensorflow.python.saved_model import tag_constants
from tensorflow.python.tools import freeze_graph
from tensorflow.python import ops
from tensorflow.tools.graph_transforms import TransformGraph

def freeze_model(saved_model_dir, output_node_names, output_filename):
  output_graph_filename = os.path.join(saved_model_dir, output_filename)
  initializer_nodes = ''
  freeze_graph.freeze_graph(
      input_saved_model_dir=saved_model_dir,
      output_graph=output_graph_filename,
      saved_model_tags = tag_constants.SERVING,
      output_node_names=output_node_names,
      initializer_nodes=initializer_nodes,
      input_graph=None,
      input_saver=False,
      input_binary=False,
      input_checkpoint=None,
      restore_op_name=None,
      filename_tensor_name=None,
      clear_devices=True,
      input_meta_graph=False,
  )

def get_graph_def_from_file(graph_filepath):
  tf.reset_default_graph()
  with ops.Graph().as_default():
    with tf.gfile.GFile(graph_filepath, 'rb') as f:
      graph_def = tf.GraphDef()
      graph_def.ParseFromString(f.read())
      return graph_def

def optimize_graph(model_dir, graph_filename, transforms, input_name, output_names, outname='optimized_model.pb'):
  input_names = [input_name] # change this as per how you have saved the model
  graph_def = get_graph_def_from_file(os.path.join(model_dir, graph_filename))
  optimized_graph_def = TransformGraph(
      graph_def,
      input_names,  
      output_names,
      transforms)
  tf.train.write_graph(optimized_graph_def,
                      logdir=model_dir,
                      as_text=False,
                      name=outname)
  print('Graph optimized!')

def convert_graph_def_to_saved_model(export_dir, graph_filepath, input_name, outputs):
  graph_def = get_graph_def_from_file(graph_filepath)
  with tf.Session(graph=tf.Graph()) as session:
    tf.import_graph_def(graph_def, name='')
    tf.compat.v1.saved_model.simple_save(
        session,
        export_dir,# change input_image to node.name if you know the name
        inputs={input_name: session.graph.get_tensor_by_name('{}:0'.format(node.name))
            for node in graph_def.node if node.op=='Placeholder'},
        outputs={t.rstrip(":0"):session.graph.get_tensor_by_name(t) for t in outputs}
    )
    print('Optimized graph converted to SavedModel!')

tf.compat.v1.enable_eager_execution()

# Look up the name of the placeholder for the input node
graph_def=get_graph_def_from_file('./ssd_mobilenet_v3_small_coco_2019_08_14/frozen_inference_graph.pb')
input_name_small=""
for node in graph_def.node:
    if node.op=='Placeholder':
        print("##### ssd_mobilenet_v3_small_coco_2019_08_14 - Input Node Name #####", node.name) # this will be the input node
        input_name_small=node.name

# Look up the name of the placeholder for the input node
graph_def=get_graph_def_from_file('./ssd_mobilenet_v3_large_coco_2019_08_14/frozen_inference_graph.pb')
input_name_large=""
for node in graph_def.node:
    if node.op=='Placeholder':
        print("##### ssd_mobilenet_v3_large_coco_2019_08_14 - Input Node Name #####", node.name) # this will be the input node
        input_name_large=node.name

# ssd_mobilenet_v3 output names
output_node_names = ['raw_outputs/class_predictions','raw_outputs/box_encodings']
outputs = ['raw_outputs/class_predictions:0','raw_outputs/box_encodings:0']

# Optimizing the graph via TensorFlow library
transforms = []
optimize_graph('./ssd_mobilenet_v3_small_coco_2019_08_14', 'frozen_inference_graph.pb', transforms, input_name_small, output_node_names, outname='optimized_model_small.pb')
optimize_graph('./ssd_mobilenet_v3_large_coco_2019_08_14', 'frozen_inference_graph.pb', transforms, input_name_large, output_node_names, outname='optimized_model_large.pb')

# convert this to a s TF Serving compatible mode - ssd_mobilenet_v3_small_coco_2019_08_14
shutil.rmtree('./ssd_mobilenet_v3_small_coco_2019_08_14/0', ignore_errors=True)
convert_graph_def_to_saved_model('./ssd_mobilenet_v3_small_coco_2019_08_14/0',
                                 './ssd_mobilenet_v3_small_coco_2019_08_14/optimized_model_small.pb', input_name_small, outputs)

# convert this to a s TF Serving compatible mode - ssd_mobilenet_v3_large_coco_2019_08_14
shutil.rmtree('./ssd_mobilenet_v3_large_coco_2019_08_14/0', ignore_errors=True)
convert_graph_def_to_saved_model('./ssd_mobilenet_v3_large_coco_2019_08_14/0',
                                 './ssd_mobilenet_v3_large_coco_2019_08_14/optimized_model_large.pb', input_name_large, outputs)

モデルの最適化 と saved_model形式 への変換を実行します。 saved_model形式 のファイル群は 「0」という名前のフォルダの中に生成されます。

$ python3 freeze_the_saved_model.py

Screenshot 2019-12-27 12:06:37.png
Screenshot 2019-12-27 12:07:00.png
生成された saved_model形式 のファイル群を分析して、 INPUT と OUTPUT の構造を覗いてみます。 Tensorflow に標準で装備されている saved_model_cli というコマンドを利用すると可視化できます。

Confirm_the_structure_of_saved_model_【ssd_mobilenet_v3_small_coco_2019_08_14】
$ saved_model_cli show --dir ./ssd_mobilenet_v3_small_coco_2019_08_14/0 --all

MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs:

signature_def['serving_default']:
  The given SavedModel SignatureDef contains the following input(s):
    inputs['normalized_input_image_tensor'] tensor_info:
        dtype: DT_FLOAT
        shape: (1, 320, 320, 3)
        name: normalized_input_image_tensor:0
  The given SavedModel SignatureDef contains the following output(s):
    outputs['raw_outputs/box_encodings'] tensor_info:
        dtype: DT_FLOAT
        shape: (1, 2034, 4)
        name: raw_outputs/box_encodings:0
    outputs['raw_outputs/class_predictions'] tensor_info:
        dtype: DT_FLOAT
        shape: (1, 2034, 91)
        name: raw_outputs/class_predictions:0
  Method name is: tensorflow/serving/predict
Confirm_the_structure_of_saved_model_【ssd_mobilenet_v3_large_coco_2019_08_14】
$ saved_model_cli show --dir ./ssd_mobilenet_v3_large_coco_2019_08_14/0 --all

MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs:

signature_def['serving_default']:
  The given SavedModel SignatureDef contains the following input(s):
    inputs['normalized_input_image_tensor'] tensor_info:
        dtype: DT_FLOAT
        shape: (1, 320, 320, 3)
        name: normalized_input_image_tensor:0
  The given SavedModel SignatureDef contains the following output(s):
    outputs['raw_outputs/box_encodings'] tensor_info:
        dtype: DT_FLOAT
        shape: (1, 2034, 4)
        name: raw_outputs/box_encodings:0
    outputs['raw_outputs/class_predictions'] tensor_info:
        dtype: DT_FLOAT
        shape: (1, 2034, 91)
        name: raw_outputs/class_predictions:0
  Method name is: tensorflow/serving/predict

COCOデータ・セットは 25GB ほどもある超巨大なデータ・セットですので、真面目にイチから TFRecords形式 へ変換を始めると数時間掛かってしまいます。 面倒ですので、私が生成したTFRecordデータ・セットの Testプリセット 部分のみを 私の Google Drive からダウンロードしてしまいます。

Creating_the_destination_path_for_the_calibration_test_data_set_6GB
$ curl -sc /tmp/cookie "https://drive.google.com/uc?export=download&id=1Uk9F4Tc-9UgnvARIVkloSoePUynyST6E" > /dev/null
$ CODE="$(awk '/_warning_/ {print $NF}' /tmp/cookie)"
$ curl -Lb /tmp/cookie "https://drive.google.com/uc?export=download&confirm=${CODE}&id=1Uk9F4Tc-9UgnvARIVkloSoePUynyST6E" -o TFDS.tar.gz
$ tar -zxvf TFDS.tar.gz
$ rm TFDS.tar.gz

Weight QuantizationInteger QuantizationFull Integer Quantization を一気に実行する Pythonスクリプト を作成します。 本来、効率的なプログラムを書くならば、リテラルで書かれているファイルパスの部分は全て変数化すべきですが、 ガガガッとフィーリングで作成しましたのでお許しください。

quantization_ssd_mobilenet_v3_small_coco_2019_08_14.py
import tensorflow as tf
import tensorflow_datasets as tfds
import numpy as np

def representative_dataset_gen():
  for data in raw_test_data.take(100):
    image = data['image'].numpy()
    image = tf.image.resize(image, (320, 320))
    image = image[np.newaxis,:,:,:]
    yield [image]

tf.compat.v1.enable_eager_execution()

# Generating a calibration data set
#raw_test_data, info = tfds.load(name="coco/2017", with_info=True, split="test", data_dir="./TFDS")
raw_test_data, info = tfds.load(name="coco/2017", with_info=True, split="test", data_dir="./TFDS", download=False)
print(info)

# Weight Quantization - Input/Output=float32
converter = tf.lite.TFLiteConverter.from_saved_model('./ssd_mobilenet_v3_small_coco_2019_08_14/0')
converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE]
tflite_quant_model = converter.convert()
with open('./ssd_mobilenet_v3_small_coco_2019_08_14/mobilenet_v3_small_weight_quant.tflite', 'wb') as w:
    w.write(tflite_quant_model)
print("Weight Quantization complete! - mobilenet_v3_small_weight_quant.tflite")

# Integer Quantization - Input/Output=float32
converter = tf.lite.TFLiteConverter.from_saved_model('./ssd_mobilenet_v3_small_coco_2019_08_14/0')
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.representative_dataset = representative_dataset_gen
tflite_quant_model = converter.convert()
with open('./ssd_mobilenet_v3_small_coco_2019_08_14/mobilenet_v3_small_integer_quant.tflite', 'wb') as w:
    w.write(tflite_quant_model)
print("Integer Quantization complete! - mobilenet_v3_small_integer_quant.tflite")

# Full Integer Quantization - Input/Output=int8
converter = tf.lite.TFLiteConverter.from_saved_model('./ssd_mobilenet_v3_small_coco_2019_08_14/0')
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.representative_dataset = representative_dataset_gen
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.inference_input_type = tf.uint8
converter.inference_output_type = tf.uint8
tflite_quant_model = converter.convert()
with open('./ssd_mobilenet_v3_small_coco_2019_08_14/mobilenet_v3_small_full_integer_quant.tflite', 'wb') as w:
    w.write(tflite_quant_model)
print("Full Integer Quantization complete! - mobilenet_v3_small_full_integer_quant.tflite")
quantization_ssd_mobilenet_v3_large_coco_2019_08_14.py
import tensorflow as tf
import tensorflow_datasets as tfds
import numpy as np

def representative_dataset_gen():
  for data in raw_test_data.take(100):
    image = data['image'].numpy()
    image = tf.image.resize(image, (320, 320))
    image = image[np.newaxis,:,:,:]
    yield [image]

tf.compat.v1.enable_eager_execution()

# Generating a calibration data set
#raw_test_data, info = tfds.load(name="coco/2017", with_info=True, split="test", data_dir="./TFDS")
raw_test_data, info = tfds.load(name="coco/2017", with_info=True, split="test", data_dir="./TFDS", download=False)

# Weight Quantization - Input/Output=float32
converter = tf.lite.TFLiteConverter.from_saved_model('./ssd_mobilenet_v3_large_coco_2019_08_14/0')
converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE]
tflite_quant_model = converter.convert()
with open('./ssd_mobilenet_v3_large_coco_2019_08_14/mobilenet_v3_large_weight_quant.tflite', 'wb') as w:
    w.write(tflite_quant_model)
print("Weight Quantization complete! - mobilenet_v3_large_weight_quant.tflite")

# Integer Quantization - Input/Output=float32
converter = tf.lite.TFLiteConverter.from_saved_model('./ssd_mobilenet_v3_large_coco_2019_08_14/0')
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.representative_dataset = representative_dataset_gen
tflite_quant_model = converter.convert()
with open('./ssd_mobilenet_v3_large_coco_2019_08_14/mobilenet_v3_large_integer_quant.tflite', 'wb') as w:
    w.write(tflite_quant_model)
print("Integer Quantization complete! - mobilenet_v3_large_integer_quant.tflite")

# Full Integer Quantization - Input/Output=int8
converter = tf.lite.TFLiteConverter.from_saved_model('./ssd_mobilenet_v3_large_coco_2019_08_14/0')
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.representative_dataset = representative_dataset_gen
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.inference_input_type = tf.uint8
converter.inference_output_type = tf.uint8
tflite_quant_model = converter.convert()
with open('./ssd_mobilenet_v3_large_coco_2019_08_14/mobilenet_v3_large_full_integer_quant.tflite', 'wb') as w:
    w.write(tflite_quant_model)
print("Full Integer Quantization complete! - mobilenet_v3_large_full_integer_quant.tflite")

Weight QuantizationInteger QuantizationFull Integer Quantization を2種類のモデルに対して一気に実行します。

Execute_Weight_Quantization
$ python3 quantization_ssd_mobilenet_v3_small_coco_2019_08_14.py
$ python3 quantization_ssd_mobilenet_v3_large_coco_2019_08_14.py

下図が、生成された .tflite ファイルの様子です。
Screenshot 2019-12-27 16:11:46.png
Screenshot 2019-12-27 16:13:13.png

こちら How to install Ubuntu 19.10 aarch64 (64bit) on RaspberryPi4 を参考に、 RaspberryPi4 へ Ubuntu 19.10 aarch64 を導入します。

次に、上記で作成した Full Integer Quantization 済みの .tflite ファイル mobilenet_v3_small_full_integer_quant.tflite を RaspberryPi4 の HOME (/home/pi など) へコピーします。

Tensorflow の標準ツール TFLite Model Benchmark Tool を使用して、 mobilenet_v3_small_full_integer_quant.tflite のパフォーマンスを計測します。 このモデルは Post-Process が含まれていませんので、公式が公開しているモデルより処理量が少なくパフォーマンスが若干高くなります。 下記は全て RaspberryPi4 上で実施する手順です。

Build_Benchmark_environment
$ sudo apt-get install wget curl git zip unzip python3-pil \
    python3-opencv python3-pip libhdf5-dev openjdk-8-jdk net-tools
$ sudo -H pip3 install pip --upgrade

## Bazel for RaspberryPi3/4 Ubuntu 19.10 install
$ wget https://github.com/PINTO0309/Bazel_bin/raw/master/0.29.1/Ubuntu1910_aarch64/openjdk-8-jdk/install.sh
$ ./install.sh

## Clone Tensorflow v1.15.0
$ git clone -b v1.15.0 --depth 1 https://github.com/tensorflow/tensorflow.git
$ cd tensorflow

## Build and run TFLite Model Benchmark Tool
$ bazel run -c opt tensorflow/lite/tools/benchmark:benchmark_model -- \
  --graph=${HOME}/mobilenet_v3_small_full_integer_quant.tflite \
  --num_threads=4 \
  --warmup_runs=1 \
  --enable_op_profiling=true

下記がモデルのパフォーマンスを計測した結果です。 avg=28121.2 の部分はマイクロ秒単位で表示されます。 つまり、1回の推論の平均実行時間は 28ms という結果なっています。 実際は推論の前後で、UIにバウンディングボックスを表示するための処理などを実装することになりますので、前処理・後処理のコストだけ遅くなることにご注意ください。

Benchmark_Results
Number of nodes executed: 176
============================== Summary by node type ==============================
      [Node type]     [count]     [avg ms]      [avg %]     [cdf %]   [mem KB]  [times called]
          CONV_2D          61       10.255      36.582%     36.582%      0.000         61
DEPTHWISE_CONV_2D          27        5.058      18.043%     54.625%      0.000         27
              MUL          26        5.056      18.036%     72.661%      0.000         26
              ADD          14        4.424      15.781%     88.442%      0.000         14
         QUANTIZE          13        1.633       5.825%     94.267%      0.000         13
       HARD_SWISH          10        0.918       3.275%     97.542%      0.000         10
         LOGISTIC           1        0.376       1.341%     98.883%      0.000          1
  AVERAGE_POOL_2D           9        0.199       0.710%     99.593%      0.000          9
    CONCATENATION           2        0.084       0.300%     99.893%      0.000          2
          RESHAPE          13        0.030       0.107%    100.000%      0.000         13

Timings (microseconds): count=50 first=28827 curr=28176 min=27916 max=28827 avg=28121.2 std=165
Memory (bytes): count=0
176 nodes observed

Full Integer Quantization後のモデルの構造は下図のとおりです。 公式チュートリアルに記載の Pipeline を使用せずに一気に Quantization しましたので、後処理の部分がもとのモデルのままの構造になっています。 こちら https://github.com/tensorflow/models/blob/master/research/object_detection/export_tflite_ssd_graph.pyhttps://github.com/tensorflow/models/blob/master/research/object_detection/export_tflite_ssd_graph_lib.py を参考に Tensor を自力で分解して推論結果を取り出す必要があります。

MobileNetV3-SSDのグラフ構造

mobilenet_v3_small_full_integer_quant.tflite.png

4.Finally

めちゃくちゃ時間を掛けましたが、推論の可視化を実装する前に力尽きました。。。 気が向いたら Post-process の実装と精度計測を頑張ってみたいと思います。

5.Reference articles

  1. [deeplab] what's the parameters of the mobilenetv3 pretrained model?
  2. When you want to fine-tune DeepLab on other datasets, there are a few cases
  3. [deeplab] Training deeplab model with ADE20K dataset
  4. Running DeepLab on PASCAL VOC 2012 Semantic Segmentation Dataset
  5. Quantize DeepLab model for faster on-device inference
  6. https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/model_zoo.md
  7. https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/quantize.md
  8. the quantized form of Shape operation is not yet implemented
  9. Post-training quantization
  10. Converter command line reference
  11. Quantization-aware training
  12. Converting a .pb file to .meta in TF 1.3
  13. Minimal code to load a trained TensorFlow model from a checkpoint and export it with SavedModelBuilder
  14. How to restore Tensorflow model from .pb file in python?
  15. Error with tag-sets when serving model using tensorflow_model_server tool
  16. ValueError: No 'serving_default' in the SavedModel's SignatureDefs. Possible values are 'name_of_my_model'
  17. kerasのモデルをデプロイする手順 - Signature作成方法解説
  18. TensorFlow で学習したモデルのグラフを tf.train.import_meta_graph でロードする
  19. Tensorflowのグラフ操作 Part1
  20. Configure input_map when importing a tensorflow model from metagraph file
  21. TFLite Model Benchmark Tool
  22. How to install Ubuntu 19.10 aarch64 (64bit) on RaspberryPi4
  23. https://zhuanlan.zhihu.com/p/90690452

6.Appendix

1. anchors の値を抽出・保存

Extract_anchor_of_const_op
import tensorflow as tf
from tensorflow.python.platform import gfile
from tensorflow.python.framework import tensor_util
import numpy as np

GRAPH_PB_PATH = './tflite_graph.pb' #path to your .pb file

with tf.Session() as sess:
  with gfile.FastGFile(GRAPH_PB_PATH,'rb') as f:
    graph_def = tf.GraphDef()
    graph_def.ParseFromString(f.read())
    sess.graph.as_default()
    tf.import_graph_def(graph_def, name='')
    graph_nodes=[n for n in graph_def.node]
    wts = [n for n in graph_nodes if n.op=='Const']
    for n in wts:
        if n.name == 'anchors':
            print("Name of the node - %s" % n.name)
            print("Value - ")
            anchors = tensor_util.MakeNdarray(n.attr['value'].tensor)
            print("anchors.shape =", anchors.shape)
            print(anchors)
            np.save('./anchors.npy', anchors)
            np.savetxt('./anchors.csv', anchors, delimiter=',')
            break

2. anchors の値をロード

Loading_"anchors"
import numpy as np
anchors = np.load('./anchors.npy')
print(anchors)

3. raw_outputs/box_encodings のデコード
https://stackoverflow.com/questions/54436186/how-to-decode-raw-outputs-box-encodings-from-tensorflow-object-detection-ssd-mob

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/kernels/detection_postprocess.cc#L265

"raw_outputs/box_encodings"_decoding
import math

y_scale = 10.0
x_scale = 10.0
h_scale = 5.0
w_scale = 5.0

# ssdlite_mobilenet_v2
### box_encoding = [1917, 4]
### anchors = [1917, 4]
### num_boxes = 1917

# box_encoding[i][0] = box_centersize.y
# box_encoding[i][1] = box_centersize.x
# box_encoding[i][2] = box_centersize.h
# box_encoding[i][3] = box_centersize.w

# anchors[i][0] = anchor.y
# anchors[i][1] = anchor.x
# anchors[i][2] = anchor.h
# anchors[i][3] = anchor.w

def decode_box_encodings(box_encoding, anchors, num_boxes):
    decoded_boxes = np.zeros((num_boxes, 4), dtype=np.float32)
    for i in range(num_boxes):
        ycenter = box_encoding[i][0] / y_scale * anchors[i][2] + anchors[i][0]
        xcenter = box_encoding[i][1] / x_scale * anchors[i][3] + anchors[i][1]
        half_h = 0.5 * math.exp((box_encoding[i][2] / h_scale)) * anchors[i][2]
        half_w = 0.5 * math.exp((box_encoding[i][3] / w_scale)) * anchors[i][3]
        decoded_boxes[i][0] = (ycenter - half_h) # ymin
        decoded_boxes[i][1] = (xcenter - half_w) # xmin
        decoded_boxes[i][2] = (ycenter + half_h) # ymax
        decoded_boxes[i][3] = (xcenter + half_w) # xmax
    return decoded_boxes
Non-Maximum_Suprression
import numpy as np

max_detections = 10
non_max_suppression_score_threshold = 0.3
intersection_over_union_threshold = 0.6

def Non_Maximum_Suprression(box_encoding, class_predictions):
    val, idx = class_predictions[:,1:].max(axis=1), \
               class_predictions[:,1:].argmax(axis=1)
    thresh_val, thresh_idx = np.array(val)[val>=non_max_suppression_score_threshold], \
                             np.array(idx)[val>=non_max_suppression_score_threshold]
    thresh_box = np.array(box_encoding)[val>=non_max_suppression_score_threshold]
    thresh_box_stack = np.hstack((thresh_box, thresh_idx[:, np.newaxis], thresh_val[:, np.newaxis]))
    thresh_box_desc = thresh_box_stack[np.argsort(thresh_box_stack[:, 5])[::-1]]
    active_box_candidate = np.ones((thresh_box_desc.shape[0], 1))
    thresh_box_stack = np.hstack((thresh_box_stack, active_box_candidate))
    num_boxes_kept, num_active_candidate = thresh_box_stack.shape[0]
    output_size = min(num_active_candidate, max_detections)
    num_selected_count = 0

    for i in range(num_boxes_kept):
        if (num_active_candidate == 0 or num_selected_count >= output_size):
            break
        if (thresh_box_stack[i, 6] == 1):
            thresh_box_stack[i, 6] = 0
            num_active_candidate -= 1
            num_selected_count += 1
        else:
            continue

        # thresh_box_stack = [ymin, xmin, ymax, xmax, class_idx, prob]
        for j in range(i + 1, num_boxes_kept):
            if (thresh_box_stack[j, 6] == 1):
                intersection_over_union = ComputeIntersectionOverUnion(thresh_box_stack[i], thresh_box_stack[j])
                if (intersection_over_union > intersection_over_union_threshold):
                    thresh_box_stack[i, 6] = 0
                    num_active_candidate -= 1
                    num_selected_count += 1

    return thresh_box_stack[thresh_box_stack[:, 6] == 1]

def ComputeIntersectionOverUnion(box_i, box_j):
    area_i = (box_i[2] - box_i[0]) * (box_i[3] - box_i[1])
    area_j = (box_j[2] - box_j[0]) * (box_j[3] - box_j[1])
    if (area_i <= 0 or area_j <= 0):
        return 0.0
    intersection_ymin = max(box_i[0], box_j[0])
    intersection_xmin = max(box_i[1], box_j[1])
    intersection_ymax = min(box_i[2], box_j[2])
    intersection_xmax = min(box_i[3], box_j[3])
    intersection_area = max(intersection_ymax - intersection_ymin, 0.0) * max(intersection_xmax - intersection_xmin, 0.0)
    return intersection_area / (area_i + area_j - intersection_area)
21
25
1

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
21
25