5
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

TechCommitAdvent Calendar 2019

Day 1

【Python/機械学習】なぜなにDeep Learning #1 パーセプトロン・ニューラルネットワーク

Last updated at Posted at 2019-12-01

はじめに

機械学習エンジニアになるために、学習の記録を残す。コンスタントに書いていく。

今回は、ディープラーニングの基本となるパーセプトロンとニューラルネットワークを説明していく。

###注意
この記事は「ゼロから作るディープラーニング」(著:斎藤 康毅氏)を読みながら学習してきたメモである。
内容を鵜呑みせず、飽くまで参考程度に読んでいただきたい。(指摘・質問は大歓迎です。但し、優しい言葉に限る。)
リンク:ゼロから作るDeep Learning

目次

・パーセプトロンとは
・ニューラルネットワークとは

#この記事の

パーセプトロンとは

複数の入力に対して、一つの出力を返すアルゴリズムである。
論理回路のAND・OR・NANDのようなものだ。
ニューラルネットワークもといディープラーニングは、このアルゴリズムをベースに作られている。

image.png

# 入力数2のAND回路をパーセプトロンで書く
def AND(x1,x2,bias=0.5):
    tmp = w1*x1 +w2*x2 - bias
    if tmp <= 0:
        return 0
    elif tmp > 0:
        return 1   

出力に影響する変数は、入力値・重み・バイアスである。これらをパラメータと呼ぶ。
ニューラルネットワークは、パラメータを調整して学習させていく。

ニューラルネットワークとは

image.png
図を見てみると、多層パーセプトロンと変わらないように見える。
だが、パーセプトロンとの大きな違いがある。

####非線形の活性化関数を使うこと

###活性化関数とは?
入力信号(入力値・バイアス・重み)の総和が閾値を境に出力値が変わる。(発火する)
パーセプトロンも何も変わらない活性化関数を持っているというが、
ニューラルネットワークでは分類問題や回帰問題によって活性化関数の種類も変わる。

###なぜ活性化関数が必要なのか
活性化関数があることで、より多くの様々な値を出力できる。
入力値・重み・バイアスを調整するだけでなく、関数を変えることで出力値を変えられるようになる。

###非線形関数
分類問題・回帰問題だろうと、突き詰めると機械学習の目的は、精度をよくすることだ。
そのために、重みやバイアスを調整しながらパラメータを最適な値を見つける必要がある。
その微調整には、線形関数では解決できない。(少し値を変えるだけで大きく変わってしまうため)
非線形関数を利用することで、それを解決できる。

5
1
1

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
5
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?