2
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

確率積分(Ito integral)を算出してみた

Last updated at Posted at 2020-03-01

■ 確率積分として以下のような方式があります

Riemann sum
式)
$ \sum_{j=0}^{N-1} h(t_j) (t_{j+1}-t_j) $

Ito integral.
伊藤清(Kiyoshi Ito)によって拡張された確率過程の方式
式)
$ \sum_{j=0}^{N-1}h(t_j) (W(t_{j+1})-W(t_j)) $.
<=> $ \int_0^{T} h(t)dW(t) $.

Stratonovich integrals
式)
$\sum_{j=0}^{N-1}h\big(\frac{t_j+t_{j+1}}{2}\big)(W(t_{j+1})-W(t_j))$

 Ito integralの計算

$h(t)\equiv W(t)$の時、Ito integralは、

\begin{align*}
\sum_{j=0}^{N-1} W(t_j) (W(t_{j+1})-W(t_j)) \\
&=\sum_{j=0}^{N-1} ({W(t_{j+1})}^2 - {W(t_{j+1})}^2 + 2 W(t_j) W(t_{j+1}) - {W(t_j)}^2  - {W(t_j)}^2) \\
&= \frac{1}{2} \sum_{j=0}^{N-1} ({W(t_{j+1})}^2 - {W(t_j)}^2 - (W(t_{j+1}) - W(t_j))^2 )\\
&= \frac{1}{2} (W(T)^2 - W(0)^2)  -  \frac{1}{2} \sum_{j=0}^{N-1} (W(t_{j+1}) - W(t_j))^2
\end{align*}

$\sum_{j=0}^{N-1} (W(t_{j+1}) - W(t_j))^2$はWiener Processの分散に等しく、$T$とおけるため、
$$\sum_{j=0}^{N-1} (W(t_{j+1}) - W(t_j))^2=\frac{1}{2}(W(T)^2-T)$$と表現できる。

Ito integralを算出してみる。

N=10000;
M=1;
T = 1.0
dt = T / N;

t = np.arange(0.0,1.0, dt);
dW = np.sqrt(dt)*randn(N,M); # (N, M)行列
W = np.cumsum(dW,axis=0);
e = np.array([[0]])
W_=np.concatenate((e,W[:-1]), axis=0)  # 初期値に0をおく  W(0)として。

ito = np.dot(W_.T,dW) # (10000, 1).T * (10000, 1)  => (1, 1)
np.abs(ito - 0.5*(W[-1]**2 - T) )[0][0]

## output
##  0.00414652405737

参考記事

  • Desmond J. Higham "An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations"

2
2
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
2
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?