0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

Tri-7BでのFew-Shot Promptingによる日本語品詞付与

Posted at

Terra Blevins, Hila Gonen, Luke Zettlemoyer『Prompting Language Models for Linguistic Structure』の手法をTri-7Bに適用して、国語研短単位でのUPOS (Universal Part-Of-Speech)品詞付与に挑戦してみた。5つの例文は、この記事と全く同じものを選んだ。

>>> class TextUPOSList(list):
...   __str__=lambda self:"\n".join("###text:"+"".join(t for t,u in s)+"\n###UPOS:"+"|".join(t+"_"+u for t,u in s) for s in self)+"\n"
...
>>> ex=TextUPOSList()
>>> ex.append([("一","NUM"),("直線","NOUN"),("に","ADP"),("伸びる","VERB"),("電撃","NOUN"),("を","ADP"),("放ち","VERB"),("、","PUNCT"),("電撃","NOUN"),("ダメージ","NOUN"),("を","ADP"),("与える","VERB"),("。","PUNCT")])
>>> ex.append([("色々","ADV"),("と","ADP"),("面白い","ADJ"),("メニュー","NOUN"),("の","ADP"),("ある","VERB"),("店","NOUN"),("。","PUNCT")])
>>> ex.append([("しかも","CCONJ"),("、","PUNCT"),("ここ","PRON"),("は","ADP"),("コース","NOUN"),("が","ADP"),("リーズナブル","ADJ"),("な","AUX"),("の","SCONJ"),("です","AUX"),("。","PUNCT")])
>>> ex.append([("彼","PRON"),("は","ADP"),("コンピュータ","NOUN"),("を","ADP"),("個人","NOUN"),("の","ADP"),("持ち物","NOUN"),("に","ADP"),("し","VERB"),("まし","AUX"),("た","AUX"),("。","PUNCT")])
>>> ex.append([("2007","NUM"),("年","NOUN"),("9","NUM"),("月","NOUN"),("現在","ADV"),("、","PUNCT"),("以下","NOUN"),("の","ADP"),("メーカー","NOUN"),("から","ADP"),("対応","NOUN"),("製品","NOUN"),("が","ADP"),("発売","VERB"),("さ","AUX"),("れ","AUX"),("て","SCONJ"),("いる","VERB"),("。","PUNCT")])
>>> from transformers import pipeline
>>> tgn=pipeline("text-generation","trillionlabs/Tri-7B",max_new_tokens=128,token="hf_this_token_is_dummy_use_your_own_one")
>>> print("\n".join(tgn(str(ex)+"###text:国境の長いトンネルを抜けると雪国であった。\n###UPOS:")[0]["generated_text"].split("\n")[len(ex)*2:len(ex)*2+2]))
###text:国境の長いトンネルを抜けると雪国であった。
###UPOS:国境_NOUN|の_ADP|長い_ADJ|トンネル_NOUN|を_ADP|抜け_VERB|ると_CONJ|雪国_NOUN|で_ADP|あった_VERB|。_PUNCT

『雪国』の冒頭文に品詞付与させてみたところ、私(安岡孝一)の手元では、Tri-7Bは「抜ける_VERB|と_SCONJ」と「で_AUX|あっ_AUX|た_AUX」にうまく品詞付与できなかった。もう一度やってみよう。

>>> print("\n".join(tgn(str(ex)+"###text:国境の長いトンネルを抜けると雪国であった。\n###UPOS:")[0]["generated_text"].split("\n")[len(ex)*2:len(ex)*2+2]))
###text:国境の長いトンネルを抜けると雪国であった。
###UPOS:国境_NOUN|の_ADP|長い_ADJ|トンネル_NOUN|を_ADP|抜け_VERB|ると_CONJ|雪国_NOUN|で_ADP|あった_VERB|。_PUNCT

どうやら同じ結果だ。ならば「予想に反して品詞付与の精度がイマイチ」という文はどうだろう。

>>> print("\n".join(tgn(str(ex)+"###text:予想に反して品詞付与の精度がイマイチ\n###UPOS:")[0]["generated_text"].split("\n")[len(ex)*2:len(ex)*2+2]))
###text:予想に反して品詞付与の精度がイマイチ
###UPOS:予想_NOUN|に_ADP|反して_ADV|品詞_NOUN|付与_NOUN|の_ADP|精度_NOUN|が_ADP|イマイチ_ADV|

やはり「反し_VERB|て_SCONJ」が正しくトークナイズできない。このあたり、昨日の記事で書いたトークナイザの問題が、モロに影響しているようだ。とするとTri-7Bは、日本語モデルとしてではなく、あくまで韓国語モデルとして使うべきなのかな。

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?