2
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

3次方程式の解の公式(カルダノの公式)の証明

Last updated at Posted at 2025-12-04

初めに

LaTeXの練習もかねて、3次方程式の解の公式を証明してみた。


$ax^3+bx^2+cx+d = 0$を$X^3+pX+q=0$に変形したい。


$x = X-\frac{b}{3a}$とおく
$a(X-\frac{b}{3a})^3+b(X-\frac{b}{3a})^2+c(X-\frac{b}{3a})+d=0$
$a(X^3-\frac{b}{a}X^2+\frac{b^2}{3a^2}X-\frac{b^3}{27a^3})+b(X^2-\frac{2b}{3a}X+\frac{b^2}{9a^2})+c(X-\frac{b}{3a})+d=0$
$aX^3+\frac{-b^2+3ac}{3a}X+\frac{2b^3-9abc+27a^2d}{27a^2}=0$
よって$p=\frac{-b^2+3ac}{3a^2},q=\frac{2b^3-9abc+27a^2d}{27a^3}$


$X^3+pX+q=0$を因数分解する

$X^3+y^3+z^3-3Xyz=(X+y+z)(X^2+y^2+z^2-Xy-yz-zX)$
$\omega^3=1,\omega^2+\omega=-1(\omegaは1の3乗根)$より、
$(X+\omega y+\omega^2z)(X+\omega^2y+\omega z)$
$=X^2+y^2+z^2-Xy-yz-zX$
よって$X^3+y^3+z^3-3Xyz=(X+y+z)(X+\omega y+ \omega^2z)
(X+\omega^2y+\omega z)$

この因数分解より

\begin{cases}-3yz=p \\
 y^3 + z^3 = q \end{cases}\tag 1

を満たす$y,z$を$p,q$で表すことができれば
$X の方程式X^3+px+q=0$の解を$p,q$で表すことができる。
(1) より

\begin{cases}y^3z^3=-\frac{p^3}{27}\\
y^3+z^3=q\end{cases}

2次方程式の解と係数の関係より、y^3,z^3を解に持つ2次方程式の解の1つは

2次方程式$x^2+ax+b=0$の解を $\alpha,\beta$とする$\alpha+\beta=-a,\alpha\beta=b$

$t^2-qt-\frac{p^3}{27}=0$
$t=\frac{3 \sqrt{3}\pm\sqrt{27q^2+4p^3}}{6\sqrt{3}}$
$y,z$は対象なので
$y=\sqrt{\frac{3\sqrt{3}q+\sqrt{27q^2+4p^3}}{6\sqrt{3}}}$
$z=\sqrt{\frac{3\sqrt{3}q-\sqrt{27q^2+4p^3}}{6\sqrt{3}}}$

よって $X=-y-z,-y\omega-z\omega^2,-y\omega^2-z\omega$であるので
$x+\frac{b}{3a}=-y-z,-y\omega-z\omega^2,-y\omega^2-z\omega$
$x=-\frac{b}{3a}-y-z,-\frac{b}{3a}-y\omega-z\omega^2,-\frac{b}{3a}-y\omega^2-z\omega$


$x=-\frac{b}{3a}-\sqrt{\frac{3\sqrt{3}q+\sqrt{27q^2+4p^3}}{6\sqrt{3}}}-\sqrt{\frac{3\sqrt{3}q-\sqrt{27q^2+4p^3}}{6\sqrt{3}}},$
$-\frac{b}{3a}-\sqrt{\frac{3\sqrt{3}q+\sqrt{27q^2+4p^3}}{6\sqrt{3}}}\omega-\sqrt{\frac{3\sqrt{3}q-\sqrt{27q^2+4p^3}}{6\sqrt{3}}}\omega^2,$
$-\frac{b}{3a}-\sqrt{\frac{3\sqrt{3}q+\sqrt{27q^2+4p^3}}{6\sqrt{3}}}\omega^2-\sqrt{\frac{3\sqrt{3}q-\sqrt{27q^2+4p^3}}{6\sqrt{3}}}\omega$

これで3次方程式の解の公式が導出できた

終わりに

LaTex初めて書いた
改行わからない
~Thank you for reading~

2
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
2
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?