0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

[Statistics] 確率の知識マップ

Last updated at Posted at 2025-12-14

【1】確率の基本法則

加法定理

$$
P(A\cup B)=P(A)+P(B)-P(A\cap B)
$$

条件付き確率

$$
P(A|B)=\frac{P(A\cap B)}{P(B)}
$$

独立性

$$
P(A\cap B)=P(A)P(B)
$$

排反性

$$
P(A \cap B) = 0
$$

ベイズの定理

$$
P(A|B)=\frac{P(B|A)P(A)}{P(B)}
$$

【2】確率変数の期待値・分散・共分散

期待値(線形性)

$$
E(aX+bY+c)=aE(X)+bE(Y)+c
$$
$$
E(XY) = E(X)E(Y)(独立なとき)
$$
$$
E(X) = 0(標準化済みなとき)
$$

分散

$$
V(X) = E(X^2) - (E(X))^2 = \mathrm{Cov}(X,X)
$$
$$
V(aX+b)=a^2V(X)
$$
$$
V(X+Y)=V(X)+V(Y)+2Cov(X,Y)
$$
$$
V(X-Y)=V(X)+V(Y)-2Cov(X,Y)
$$
$$
V(X) = 1(標準化済みなとき)
$$

共分散

$$
Cov(X,Y)=E(XY)-E(X)E(Y)
$$
$$
Cov(X,X) = E(X^2) - (E(X))^2 = V(X)
$$
$$
Cov(aX, bY) = ab * Cov(X, Y)
$$
$$
Cov(aX + bY, cX - dY) = Cov(aX, cX) - Cov(aX, dY) + Cov(bY, cX) - Cov(bY, dY)
$$
$$
= acV(X) - adCov(X, Y) + bcCov(X, Y) - bdV(Y)
$$
$$
Cov(aX+b,cY-d)=ac * Cov(X,Y)
$$
$$
Cov(X, Y) = 0(独立なとき)
$$

相関係数

$$
\rho(X, Y) = \frac{Cov(X,Y)}{\sqrt{V(X)}\sqrt{V(Y)}}
$$
$$
\rho(aX, bY) = \frac{ab}{|a||b|} * \rho(X, Y)
$$
$$
\rho(X, Y) = 0(独立なとき)
$$

【3】代表的分布

分布 確率関数・密度関数の形 期待値 分散
二項分布 $ P(X=x)=\binom{n}{x}p^x(1-p)^{n-x} $ $np$ $np(1-p)$
ポアソン分布 $ P(X=x)=\dfrac{\lambda^x e^{-\lambda}}{x!} $ $\lambda$ $\lambda$
正規分布 $ f(x)=\dfrac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} $ $\mu$ $\sigma^2$
一様分布 $ f(x)=\dfrac{1}{b-a}\quad(a\le x\le b) $ $\dfrac{a+b}{2}$ $\dfrac{(b-a)^2}{12}$
指数分布 $ f(x)=\lambda e^{-\lambda x}\quad(x\ge0) $ $\dfrac{1}{\lambda}$ $\dfrac{1}{\lambda^2}$
幾何分布 $ P(X=x)=p(1-p)^{x-1}\quad(x=1,2,\dots) $ $\dfrac{1}{p}$ $\dfrac{1-p}{p^2}$

【4】確率変数の暗記

$$
Cov(X,Y) = E[XY] − E[X]E[Y]
$$
$$
Var(X) = E[X²] − (E[X])²
$$
$$
Var(aX+b) = a²Var(X)
$$
$$
Cov(aX+b, cY+d) = ac·Cov(X,Y)
$$
$$
Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y)
$$
$$
Var(X−Y) = Var(X) + Var(Y) − 2Cov(X,Y)
$$
$$
ρ(aX,bY) = sign(ab)·ρ(X,Y)
$$

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?