0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

直交関数系を用いた最小二乗近似とフーリエ級数の式

Posted at

当記事では下記に基づいて直交関数系を用いた最小二乗近似からフーリエ級数の式の導出を確認します。

前提の確認

直交関数系

フーリエ級数の式

関数$f(x)$の区間$[-\pi, \pi]$上のフーリエ級数は下記のように表すことができる。

\begin{align}
f(x) & \simeq \frac{a_{0}}{2} + a_{1} \cos{x} + b_{1} \sin{x} + a_{2} \cos{2x} + b_{2} \sin{2x} + \cdots \\
a_{k} &= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos{kx} dx \\
b_{k} &= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin{kx} dx
\end{align}

最小二乗近似の式からのフーリエ級数の導出 (直交関数系)

最小二乗近似の式

\begin{align}
J = \frac{1}{2} \int_{a}^{b} \left( f(x) - \sum_{k=1}^{n} c_{k} \phi_{k}(x) \right)^{2} dx \longrightarrow \mathrm{minimize}
\end{align}

上記の$c_{i}$による偏微分は下記のように導出できます。

\begin{align}
\frac{\partial J}{\partial c_{i}} &= \frac{1}{2} \frac{\partial}{\partial c_{i}} \int_{a}^{b} \left( f(x) - \sum_{k=1}^{n} c_{k} \phi_{k}(x) \right)^{2} dx \\
  &= \frac{1}{2} \int_{a}^{b} \frac{\partial}{\partial c_{i}} \left( f(x) - \sum_{k=1}^{n} c_{k} \phi_{k}(x) \right)^{2} dx \\
  &= \frac{1}{\cancel{2}} \int_{a}^{b} \cancel{2} \left( f(x) - \sum_{k=1}^{n} c_{k} \phi_{k}(x) \right) \times \left( - \phi_{i}(x) \right) dx \\
  &= -\int_{a}^{b} \left( f(x) - \sum_{k=1}^{n} c_{k} \phi_{k}(x) \right) \phi_{i}(x) dx \\
  &= \sum_{k=1}^{n} c_{k} \int_{a}^{b} \phi_{k}(x)\phi_{i}(x) dx - \int_{a}^{b} f(x) \phi_{i}(x) dx
\end{align}

上記の式に基づいて$i=1, \cdots , n$に関する式を並べると下記の正規方程式が得られます。

\begin{align}
\left(\begin{array}{c} \displaystyle \frac{\partial J}{\partial c_{1}} \\ \vdots \\ \displaystyle \frac{\partial J}{\partial c_{n}} \end{array} \right) = \left(\begin{array}{c} \displaystyle \sum_{k=1}^{n} c_{k} \int_{a}^{b} \phi_{k}(x)\phi_{1}(x) dx - \int_{a}^{b} f(x) \phi_{1}(x) dx \\ \vdots \\ \displaystyle \sum_{k=1}^{n} c_{k} \int_{a}^{b} \phi_{k}(x)\phi_{n}(x) dx - \int_{a}^{b} f(x) \phi_{n}(x) dx \end{array} \right) &= \left(\begin{array}{c} 0 \\ \vdots \\ 0 \end{array} \right) \\
\left(\begin{array}{c} \displaystyle \sum_{k=1}^{n} c_{k} \int_{a}^{b} \phi_{k}(x)\phi_{1}(x) dx \\ \vdots \\ \displaystyle \sum_{k=1}^{n} c_{k} \int_{a}^{b} \phi_{k}(x)\phi_{n}(x) dx \end{array} \right) &= \left(\begin{array}{c} \displaystyle \int_{a}^{b} f(x) \phi_{1}(x) dx \\ \vdots \\ \displaystyle \int_{a}^{b} f(x) \phi_{n}(x) dx \end{array} \right) \\
\left(\begin{array}{ccc} \displaystyle \int_{a}^{b} \phi_{1}(x)^{2} dx & \cdots & \displaystyle \int_{a}^{b} \phi_{1}(x)\phi_{n}(x) dx \\ \vdots & \ddots & \vdots \\ \displaystyle \int_{a}^{b} \phi_{n}(x)\phi_{1}(x) dx & \cdots & \displaystyle \int_{a}^{b} \phi_{n}(x)^{2} dx \end{array} \right) \left(\begin{array}{c} c_{1} \\ \vdots \\ c_{n} \end{array} \right) &= \left(\begin{array}{c} \displaystyle \int_{a}^{b} f(x) \phi_{1}(x) dx \\ \vdots \\ \displaystyle \int_{a}^{b} f(x) \phi_{n}(x) dx \end{array} \right)  \quad (2)
\end{align}

ここで$\phi_{1}(x), \cdots , \phi_{n}(x)$が区間$[a,b]$上の直交関数系であるとき下記が成立します。

\begin{align}
\int_{a}^{b} \phi_{i}(x)\phi_{j}(x) dx = 0 \qquad i \neq j
\end{align}

したがって$\phi_{1}(x), \cdots , \phi_{n}(x)$が区間$[a,b]$上の直交関数系であるとき$(1)$式は下記のように変形できます。

\begin{align}
\left(\begin{array}{ccc} \displaystyle \int_{a}^{b} \phi_{1}(x)^{2} dx & \cdots & \displaystyle \int_{a}^{b} \phi_{1}(x)\phi_{n}(x) dx \\ \vdots & \ddots & \vdots \\ \displaystyle \int_{a}^{b} \phi_{n}(x)\phi_{1}(x) dx & \cdots & \displaystyle \int_{a}^{b} \phi_{n}(x)^{2} dx \end{array} \right) \left(\begin{array}{c} c_{1} \\ \vdots \\ c_{n} \end{array} \right) &= \left(\begin{array}{c} \displaystyle \int_{a}^{b} f(x) \phi_{1}(x) dx \\ \vdots \\ \displaystyle \int_{a}^{b} f(x) \phi_{n}(x) dx \end{array} \right) \quad (1) \\
\left(\begin{array}{cccc} \displaystyle \int_{a}^{b} \phi_{1}(x)^{2} dx & 0 & \cdots & 0 \\ 0 & \displaystyle \int_{a}^{b} \phi_{2}(x)^{2} dx & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \displaystyle \int_{a}^{b} 0 & 0 & \cdots & \displaystyle \int_{a}^{b} \phi_{n}(x)^{2} dx \end{array} \right) \left(\begin{array}{c} c_{1} \\ c_{2} \\ \vdots \\ c_{n} \end{array} \right) &= \left(\begin{array}{c} \displaystyle \int_{a}^{b} f(x) \phi_{1}(x) dx \\ \vdots \\ \displaystyle \int_{a}^{b} f(x) \phi_{n}(x) dx \end{array} \right) \\
\left(\begin{array}{c} \displaystyle c_{1} \int_{a}^{b} \phi_{1}(x)^{2} dx \\ \vdots \\ \displaystyle c_{n} \int_{a}^{b} \phi_{n}(x)^{2} dx \end{array} \right) &= \left(\begin{array}{c} \displaystyle \int_{a}^{b} f(x) \phi_{1}(x) dx \\ \vdots \\ \displaystyle \int_{a}^{b} f(x) \phi_{n}(x) dx \end{array} \right)
\end{align}

フーリエ級数の係数の導出

関数$\cos{kx}$と$\sin{kx}$は区間$[-\pi, \pi]$上で直交関数系であるので、$(2)$式より前節のフーリエ級数の係数の式を得ることができます。

\begin{align}
a_{k} &= \frac{\displaystyle \int_{-\pi}^{\pi} f(x) \cos{kx} dx}{\displaystyle \int_{-\pi}^{\pi} \cos^{2}{kx} dx} \\
  &= \frac{\displaystyle \int_{-\pi}^{\pi} f(x) \cos{kx} dx}{\displaystyle \frac{1}{2} \int_{-\pi}^{\pi} (1+\cos{2kx}) dx} \\
  &= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos{kx} dx \\
b_{k} &= \frac{\displaystyle \int_{-\pi}^{\pi} f(x) \cos{kx} dx}{\displaystyle \int_{-\pi}^{\pi} \sin^{2}{kx} dx} \\
  &= \frac{\displaystyle \int_{-\pi}^{\pi} f(x) \cos{kx} dx}{\displaystyle \frac{1}{2} \int_{-\pi}^{\pi} (1-\cos{2kx}) dx} \\
  &= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin{kx} dx
\end{align}
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?