機械学習の regularization の訳は正則化 (正規化ではない)

  • 11
    Like
  • 0
    Comment

Coursera の Machine Learning コース の日本語字幕で regularization の訳が正規化となっているためか、regularization を正規化と言っている人が散見されます。
(身近な人にもいましたし、"Coursera 正規化" 等でウェブ検索すると結構ヒットします)

しかし、regularization の訳は 正則化 が普通のはずです。

以前、大学の先生からの伝聞でその由来を聞きました。

Coursera の Machine Learning コース の Week 2 でも解説されているように、最小二乗誤差の線形回帰は解析解を求めることができ、その解は
image
になります。

しかし、特徴量に対して学習データが少なすぎたりすると、image の部分が非正則になって、逆行列を求められなくなります。

そこで、パラメータのL2ノルムの項 (正則化項) を入れることで、解析解は
image
になります。

このように、正則化項を入れることによって解析解の image の部分が image
という正則行列 (regular matrix) になるので逆行列を求められるようになり、不良設定問題 (解が一意に定まらない) が解消されます。

このような経緯から、regular matrix が正則行列と訳されていることと合わせて regularization正則化 というらしいです。

正規化normalization の訳として使われています。
これはデータのスケーリングのことです。間違えないようにしましょう。