0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

Jupyter + Matplotlib > ADDA | TensorFlow TFRecordsファイル(IntField-Y)の描画 + 所感

Last updated at Posted at 2017-07-09
動作環境
GeForce GTX 1070 (8GB)
ASRock Z170M Pro4S [Intel Z170chipset]
Ubuntu 16.04 LTS desktop amd64
TensorFlow v1.1.0
cuDNN v5.1 for Linux
CUDA v8.0
Python 3.5.2
IPython 6.0.0 -- An enhanced Interactive Python.
gcc (Ubuntu 5.4.0-6ubuntu1~16.04.4) 5.4.0 20160609
GNU bash, version 4.3.48(1)-release (x86_64-pc-linux-gnu)

関連: ADDA | TensorFlow > TFRecordsへのIntField-Y格納と試し読み v0.2 > 5次元のinput node: [mr], [mi]追加

上記において作成したIntField-Y_170709.tfrecordsを読込んでJupyterで表示する。

code v0.1

ベースcode: TensorFlow / ADDA > 線形方程式の初期値用データの学習 > 結果確認コード:v0.2, v0.3

display_TFRecords_IntField_170709.ipynb
import numpy as np
import tensorflow as tf
import math
import sys
import matplotlib.pyplot as plt
import matplotlib.cm as cm

"""
v0.1 Jul. 09, 2017
  - read from TFRecords format
     - add get_group_features()
     - add get_feature_float32()
=== branched from [check_resultmap_170429.py: v0.3] ===
"""

# on
#   Ubuntu 16.04 LTS
#   TensorFlow v1.1
#   Python 3.5.2
#   IPython 6.0.0 -- An enhanced Interactive Python.


def get_feature_float32(example, feature_name):
    wrk_raw = (example.features.feature[feature_name]
               .bytes_list
               .value[0])
    wrk_1d = np.fromstring(wrk_raw, dtype=np.float32)
    wrk_org = wrk_1d.reshape([1, -1])
    return wrk_org


def get_group_features(example):
    xpos_org = get_feature_float32(example, 'xpos_raw')
    ypos_org = get_feature_float32(example, 'ypos_raw')
    zpos_org = get_feature_float32(example, 'zpos_raw')
    mr_org = get_feature_float32(example, 'mr_raw')
    mi_org = get_feature_float32(example, 'mi_raw')
    exr_org = get_feature_float32(example, 'exr_raw')
    exi_org = get_feature_float32(example, 'exi_raw')
    eyr_org = get_feature_float32(example, 'eyr_raw')
    eyi_org = get_feature_float32(example, 'eyi_raw')
    ezr_org = get_feature_float32(example, 'ezr_raw')
    ezi_org = get_feature_float32(example, 'ezi_raw')

    pos = xpos_org[0], ypos_org[0], zpos_org[0]
    ex = exr_org[0], exi_org[0]
    ey = eyr_org[0], eyi_org[0]
    ez = ezr_org[0], ezi_org[0]
    return pos + ex + ey + ez


class TARGET_IDX:
    EXR, EXI = 3, 4  # real and imaginary part of Ex
    EYR, EYI = 5, 6
    EZR, EZI = 7, 8

# parameters
SIZE_MAP_X = 30  # size of the image
SIZE_MAP_Y = 30
ZOOM_X = 15.0  #
ZOOM_Y = 15.0
SHIFT_X = 15.0  # to shift the center position
SHIFT_Y = 15.0
rmap = [[0.0 for yi in range(SIZE_MAP_Y)] for xi in range(SIZE_MAP_X)]

# targetIdx = TARGET_IDX.EXR


INP_FILE = 'IntField-Y_170709.tfrecords'

pickUpZvalue = 0.23621  # arbitrary selected

atargetIdx = TARGET_IDX.EZR  # [set this]

record_iterator = tf.python_io.tf_record_iterator(path=INP_FILE)
for record in record_iterator:
    example = tf.train.Example()
    example.ParseFromString(record)

    tpl = get_group_features(example)

    xpos_val = tpl[0]
    ypos_val = tpl[1]
    zpos_val = tpl[2]
    ax, ay, az = *xpos_val, *ypos_val, *zpos_val
    aTarget = tpl[atargetIdx]

    if abs(az - pickUpZvalue) < 1e-7:  # sys.float_info.epsilon:
        continue

    xidx = (SIZE_MAP_X * ax / ZOOM_X + SHIFT_X).astype(int)
    yidx = (SIZE_MAP_Y * ay / ZOOM_Y + SHIFT_Y).astype(int)

    if xidx < 0 or xidx >= SIZE_MAP_X:
        continue
    if yidx < 0 or yidx >= SIZE_MAP_Y:
        continue

    rmap[xidx][yidx] = aTarget  # overwrite

# draw map
wrkarr = np.array(rmap)
figmap = np.reshape(wrkarr, (SIZE_MAP_X, SIZE_MAP_Y))
plt.imshow(figmap, extent=(0, SIZE_MAP_X, 0, SIZE_MAP_Y), cmap=cm.jet)
plt.colorbar()
plt.show()

Screenshot from 2017-07-09 13-24-16.png

TODO

ファイル読込みしながらマップ展開するため、pickUpZvalueを自動計算できない。

優先度は高くないので固定値使用にしておく。

所感

2017/07/09

Coarse計算, Fine計算

  • dipole数を少なめでADDA計算を実施
  • 結果をDeep Learning
  • Predictionから初期値を取得, dipole数を多くしたADDA計算を実施

このシナリオなら計算を効率化できるだろうか。

5次元補間完了してからのネタ。 

0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?