0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

TensorFlow / ADDA > 線形方程式の初期値用データの学習 > 結果確認コード:v0.2, v0.3

Last updated at Posted at 2017-05-02
動作環境
GeForce GTX 1070 (8GB)
ASRock Z170M Pro4S [Intel Z170chipset]
Ubuntu 14.04 LTS desktop amd64
TensorFlow v0.11
cuDNN v5.1 for Linux
CUDA v8.0
Python 2.7.6
IPython 5.1.0 -- An enhanced Interactive Python.
gcc (Ubuntu 4.8.4-2ubuntu1~14.04.3) 4.8.4
GNU bash, version 4.3.8(1)-release (x86_64-pc-linux-gnu)

v0.1: http://qiita.com/7of9/items/09262a2ab01d037d169b

結果確認コードを変更して、Y, Z方向の電場Eの実部、虚部の値を扱えるようにした。
その中で学んだことが、Enumに相当するものの実装。

code v0.2

targetIdxの指定TARGET_IDX.EXRTARGET_IDX.EZIなどのように変更することで、Y, Zの電場の実部、虚部を切り替えることが可能。

Jupyter code

実行にはv0.1で作成したLN-INPUT-CSVが必要。

check_resultmap_170429.ipynb
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import math
import sys
import matplotlib.pyplot as plt
import matplotlib.cm as cm

'''
v0.2 Mar. 03, 2017
   - add [Elist] instead of each of [Exr, Exi, ...]
   - add [targetIdx] for selection of the target item
   - add enum [TARGET_IDX]
v0.1 Apr. 29, 2017
   - use snippet from [check_resultmap_170329.ipynb] v0.2
'''
# codingrule:PEP8

src_data = np.genfromtxt('LN-INPUT-CSV', delimiter=',')

xpos, ypos, zpos = src_data[:, 0], src_data[:, 1], src_data[:, 2]
# Exr, Exi, Eyr, Eyi, Ezr, Ezi
Elist = [src_data[:, idx] for idx in range(3, 9)]


class TARGET_IDX:
    EXR, EXI = 3, 4  # real and imaginary part of Ex
    EYR, EYI = 5, 6  # those of Ey
    EZR, EZI = 7, 8  # those of Ez

# get middle value for zpos
wrk = np.unique(zpos)
if len(wrk) % 2 == 0:
    # let the number of items [even]
    wrk = np.delete(wrk, max(wrk))
pickUpZvalue = np.median(wrk)

# parameters
SIZE_MAP_X = 30  # size of the image
SIZE_MAP_Y = 30
ZOOM_X = 15.0  #
ZOOM_Y = 15.0
SHIFT_X = 15.0  # to shift the center position
SHIFT_Y = 15.0
rmap = [[0.0 for yi in range(SIZE_MAP_Y)] for xi in range(SIZE_MAP_X)]

targetIdx = TARGET_IDX.EZI

# prepare map
for aline in zip(xpos, ypos, zpos, *Elist):
    ax, ay, az = aline[0], aline[1], aline[2]
    aTarget = aline[targetIdx]
    if abs(az - pickUpZvalue) > sys.float_info.epsilon:
        continue

    xidx = (SIZE_MAP_X * ax / ZOOM_X + SHIFT_X).astype(int)
    yidx = (SIZE_MAP_Y * ay / ZOOM_Y + SHIFT_Y).astype(int)

    if xidx < 0 or xidx >= SIZE_MAP_X:
        continue
    if yidx < 0 or yidx >= SIZE_MAP_Y:
        continue

    rmap[xidx][yidx] = aTarget  # overwrite

# draw map
wrkarr = np.array(rmap)
figmap = np.reshape(wrkarr, (SIZE_MAP_X, SIZE_MAP_Y))
plt.imshow(figmap, extent=(0, SIZE_MAP_X, 0, SIZE_MAP_Y), cmap=cm.jet)
plt.show()

結果

Exの実部
qiita.png

Exの虚部
qiita.png

Eyの実部
qiita.png

Eyの虚部
qiita.png

Ezの実部
qiita.png

Ezの虚部
qiita.png

v0.3

Elistの取得方法について、読みやすい実装方法を教えていただきました
情報感謝です。

Elist = [src_data[:, idx] for idx in range(3, 9)]から以下のように変更しました。

Elist = src_data.T[3:9]

Jupyter code.

check_resultmap_170429
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import math
import sys
import matplotlib.pyplot as plt
import matplotlib.cm as cm

'''
v0.3 Mar. 03, 2017
   - [Elist] is extracted using matrix transposition
v0.2 Mar. 03, 2017
   - add [Elist] instead of each of [Exr, Exi, ...]
   - add [targetIdx] for selection of the target item
   - add enum [TARGET_IDX]
v0.1 Apr. 29, 2017
   - use snippet from [check_resultmap_170329.ipynb] v0.2
'''
# codingrule:PEP8

src_data = np.genfromtxt('LN-INPUT-CSV', delimiter=',')

xpos, ypos, zpos = src_data[:, 0], src_data[:, 1], src_data[:, 2]
# Exr, Exi, Eyr, Eyi, Ezr, Ezi
Elist = src_data.T[3:9]

class TARGET_IDX:
    EXR, EXI = 3, 4  # real and imaginary part of Ex
    EYR, EYI = 5, 6  # those of Ey
    EZR, EZI = 7, 8  # those of Ez

# get middle value for zpos
wrk = np.unique(zpos)
if len(wrk) % 2 == 0:
    # let the number of items [even]
    wrk = np.delete(wrk, max(wrk))
pickUpZvalue = np.median(wrk)

# parameters
SIZE_MAP_X = 30  # size of the image
SIZE_MAP_Y = 30
ZOOM_X = 15.0  #
ZOOM_Y = 15.0
SHIFT_X = 15.0  # to shift the center position
SHIFT_Y = 15.0
rmap = [[0.0 for yi in range(SIZE_MAP_Y)] for xi in range(SIZE_MAP_X)]

targetIdx = TARGET_IDX.EYR

# prepare map
for aline in zip(xpos, ypos, zpos, *Elist):
    ax, ay, az = aline[0], aline[1], aline[2]
    aTarget = aline[targetIdx]
    if abs(az - pickUpZvalue) > sys.float_info.epsilon:
        continue

    xidx = (SIZE_MAP_X * ax / ZOOM_X + SHIFT_X).astype(int)
    yidx = (SIZE_MAP_Y * ay / ZOOM_Y + SHIFT_Y).astype(int)

    if xidx < 0 or xidx >= SIZE_MAP_X:
        continue
    if yidx < 0 or yidx >= SIZE_MAP_Y:
        continue

    rmap[xidx][yidx] = aTarget  # overwrite

# draw map
wrkarr = np.array(rmap)
figmap = np.reshape(wrkarr, (SIZE_MAP_X, SIZE_MAP_Y))
plt.imshow(figmap, extent=(0, SIZE_MAP_X, 0, SIZE_MAP_Y), cmap=cm.jet)
plt.show()
0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?