0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

ADDA | TensorFlow > TFRecordsへのIntField-Y格納と試し読み v0.2 > 5次元のinput node: [mr], [mi]追加

Last updated at Posted at 2017-07-09
動作環境
GeForce GTX 1070 (8GB)
ASRock Z170M Pro4S [Intel Z170chipset]
Ubuntu 16.04 LTS desktop amd64
TensorFlow v1.1.0
cuDNN v5.1 for Linux
CUDA v8.0
Python 3.5.2
IPython 6.0.0 -- An enhanced Interactive Python.
gcc (Ubuntu 5.4.0-6ubuntu1~16.04.4) 5.4.0 20160609
GNU bash, version 4.3.48(1)-release (x86_64-pc-linux-gnu)

v0.1: http://qiita.com/7of9/items/cd488763913f0435c39a

概要

This article is related to ADDA (light scattering simulator based on the discrete dipole approximation).

ADDAの計算で重要となるのが、X,Y,Z方向の電場の値。ランダムな初期値を用いると計算が遅く、最終の解に近い初期値を用いると計算が早くなることは経験済。

supercomputerで計算した最終解を元にDeep learningで学習を行い、その結果を通常のPCで用いる。そうすることで、通常のPC上での計算を高速化し、Communityとしての計算資源の効率利用を目論んでいる。

X,Y,Z方向の電場の値をTensorFlowで学習させようとしている。

入力パラメータとして検討しているのは以下

  • x,y,z : dipole position
  • mr, mi : refractive index
    • ADDA実行ごとにパラメータとして与える

今回はmr, miをTFRecordsに追加するようにした。

code

対象ファイル

TFRecords保存 v0.2

toTFRecords_InitFieldY_170709.py
import numpy as np
import tensorflow as tf
import argparse

"""
::runtime parameters::
  - mr: real part of refractive index
  - mi: imaginary part of refractive index
"""

"""
v0.2 Jul. 09, 2017
   - read [mr] and [mi] from runtime parameters
      + add get_runtimeparams_mr_mi()
v0.1 Jul. 09, 2017
   - save as [TFRecords] format
      + add convert_to_raw()
      + add [OUT_FILE]
      + add _int64_feature()
      + add _bytes_feature()
=== branched to [IntFieldY_to_TFRecords_170709.py] ===
v0.1 Apr. 22, 2017 (convertToInputcsv_170422.py)
   - read 'IntField' then output for TensorFlow
"""

# on
#   Ubuntu 16.04 LTS
#   TensorFlow v1.1
#   Python 3.5.2

# codingrule: PEP8


def _bytes_feature(value):
    return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))


def _int64_feature(value):
    return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))


def convert_to_raw(orgval):
    wrk_org = np.array(orgval, dtype=np.float32)
    wrk_raw = wrk_org.tostring()
    return wrk_raw


def get_runtimeparams_mr_mi():
    parser = argparse.ArgumentParser(description="test170709")

    parser.add_argument(
        '--mr',
        dest='mr',
        type=float,
        help='real part of the refractive index',
        required=True)

    parser.add_argument(
        '--mi',
        dest='mi',
        type=float,
        help='imaginary part of the refractive index',
        required=True)

    cmd_args = parser.parse_args()
    return cmd_args.mr, cmd_args.mi


OUT_FILE = 'IntField-Y_170709.tfrecords'
data = np.genfromtxt('IntField-Y', delimiter=' ')
arg_mr, arg_mi = get_runtimeparams_mr_mi()

xpos, ypos, zpos = data[1:, 0], data[1:, 1], data[1:, 2]  # dipole location
E2 = data[1:, 3]
Exr, Exi = data[1:, 4], data[1:, 5]  # real and imaginary parts of Ex
Eyr, Eyi = data[1:, 6], data[1:, 7]  # real and imaginary parts of Ey
Ezr, Ezi = data[1:, 8], data[1:, 9]  # real and imaginary parts of Ez

list = zip(xpos, ypos, zpos, Exr, Exi, Eyr, Eyi, Ezr, Ezi)

with tf.python_io.TFRecordWriter(OUT_FILE) as tf_writer:
    for tpl in list:
        xpos, ypos, zpos = tpl[0:3]
        exr, exi, eyr, eyi, ezr, ezi = tpl[3:9]
        # for debug
        print("%s, %s, %s, %s, %s, %s, %s, %s, %s" % tpl)
        #
        example = tf.train.Example(features=tf.train.Features(feature={
            'xpos_raw': _bytes_feature(convert_to_raw(xpos)),
            'ypos_raw': _bytes_feature(convert_to_raw(ypos)),
            'zpos_raw': _bytes_feature(convert_to_raw(zpos)),
            'mr_raw': _bytes_feature(convert_to_raw(arg_mr)),
            'mi_raw': _bytes_feature(convert_to_raw(arg_mi)),
            'exr_raw': _bytes_feature(convert_to_raw(exr)),
            'exi_raw': _bytes_feature(convert_to_raw(exi)),
            'eyr_raw': _bytes_feature(convert_to_raw(eyr)),
            'eyi_raw': _bytes_feature(convert_to_raw(eyi)),
            'ezr_raw': _bytes_feature(convert_to_raw(ezr)),
            'ezi_raw': _bytes_feature(convert_to_raw(ezi))
            }))
        tf_writer.write(example.SerializeToString())

試し読み v0.2

fromTFRecords_InitFieldY_170709.py
import numpy as np
import tensorflow as tf

"""
v0.2 Jul. 09, 2017
  - read [mr] and [mi]
v0.1 Jul. 09, 2017
  - read position and Ex, Ey, Ez
     + add get_feature_float32()
"""

# on
#   Ubuntu 16.04 LTS
#   TensorFlow v1.1
#   Python 3.5.2

# codingrule: PEP8


def get_feature_float32(example, feature_name):
    wrk_raw = (example.features.feature[feature_name]
               .bytes_list
               .value[0])
    wrk_1d = np.fromstring(wrk_raw, dtype=np.float32)
    wrk_org = wrk_1d.reshape([1, -1])
    return wrk_org

INP_FILE = 'IntField-Y_170709.tfrecords'

record_iterator = tf.python_io.tf_record_iterator(path=INP_FILE)
for record in record_iterator:
    example = tf.train.Example()
    example.ParseFromString(record)

    xpos_org = get_feature_float32(example, 'xpos_raw')
    ypos_org = get_feature_float32(example, 'ypos_raw')
    zpos_org = get_feature_float32(example, 'zpos_raw')
    mr_org = get_feature_float32(example, 'mr_raw')
    mi_org = get_feature_float32(example, 'mi_raw')
    exr_org = get_feature_float32(example, 'exr_raw')
    exi_org = get_feature_float32(example, 'exi_raw')
    eyr_org = get_feature_float32(example, 'eyr_raw')
    eyi_org = get_feature_float32(example, 'eyi_raw')
    ezr_org = get_feature_float32(example, 'ezr_raw')
    ezi_org = get_feature_float32(example, 'ezi_raw')

    list_pos = *xpos_org, *ypos_org, *zpos_org, *mr_org, *mi_org
    list_e = *exr_org, *exi_org, *eyr_org, *eyi_org, *ezr_org, *ezi_org

    print(*list_pos, *list_e)

実行

--mr--miを指定する。

Pope and Fry (1997)の波長550nmあたりの水粒子の値など。
http://www.philiplaven.com/p20.html

TFRecords格納時の出力は今回は使わないので/dev/nullにする。

$ python3 toTFRecords_InitFieldY_170709.py --mr 1.335 --mi 1e-8 > /dev/null
$ python3 fromTFRecords_InitFieldY_170709.py | head
[-0.23620997] [-1.6534698] [-5.90524912] [ 1.33500004] [  9.99999994e-09] [-0.01643909] [ 0.00506505] [ 0.53640616] [ 0.29324207] [ 0.03475441] [-0.07514133]
[ 0.23620997] [-1.6534698] [-5.90524912] [ 1.33500004] [  9.99999994e-09] [ 0.01643909] [-0.00506505] [ 0.53640616] [ 0.29324207] [ 0.03475441] [-0.07514133]
[-1.18104982] [-1.18104982] [-5.90524912] [ 1.33500004] [  9.99999994e-09] [-0.06216653] [ 0.02425352] [ 0.61625606] [ 0.27670044] [ 0.02440614] [-0.05486268]
[-0.70862991] [-1.18104982] [-5.90524912] [ 1.33500004] [  9.99999994e-09] [-0.07402581] [ 0.00639074] [ 0.51409435] [ 0.30612269] [ 0.02715302] [-0.06470039]
[-0.23620997] [-1.18104982] [-5.90524912] [ 1.33500004] [  9.99999994e-09] [-0.03451369] [-0.00239405] [ 0.52134091] [ 0.35712481] [ 0.03088294] [-0.06684458]
[ 0.23620997] [-1.18104982] [-5.90524912] [ 1.33500004] [  9.99999994e-09] [ 0.03451369] [ 0.00239405] [ 0.52134091] [ 0.35712481] [ 0.03088294] [-0.06684458]
[ 0.70862991] [-1.18104982] [-5.90524912] [ 1.33500004] [  9.99999994e-09] [ 0.07402581] [-0.00639074] [ 0.51409435] [ 0.30612269] [ 0.02715302] [-0.06470039]
[ 1.18104982] [-1.18104982] [-5.90524912] [ 1.33500004] [  9.99999994e-09] [ 0.06216653] [-0.02425352] [ 0.61625606] [ 0.27670044] [ 0.02440614] [-0.05486268]
[-1.18104982] [-0.70862991] [-5.90524912] [ 1.33500004] [  9.99999994e-09] [-0.06618973] [ 0.00543136] [ 0.67104828] [ 0.33572644] [ 0.01676365] [-0.03849823]
[-0.70862991] [-0.70862991] [-5.90524912] [ 1.33500004] [  9.99999994e-09] [-0.04588795] [ 0.00480362] [ 0.54361492] [ 0.37286496] [ 0.02019378] [-0.04343719]
Traceback (most recent call last):
  File "fromTFRecords_InitFieldY_170709.py", line 50, in <module>
    print(*list_pos, *list_e)
BrokenPipeError: [Errno 32] Broken pipe

4列目と5列目に入った。

0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?