0
0

米田埋め込みは単位的プロ函手

Posted at

米田埋め込み

米田埋め込みを

\begin{align}
\Delta^\mathbb{C}_{(a)}&:=\text{Hom}_\mathbb{C}(-,a)\\
\Delta^{(a)}_\mathbb{C}&:=\text{Hom}_\mathbb{C}(a,-)
\end{align}

と表す.

Kan 拡張

Kan 拡張とエンド,コエンドには次の関係がある.

\begin{align}
\text{Lan}_EF_{(d)}&=\overline{\bigoplus_{c\in\mathbb{C}}}\Delta_{(d)}^{E_{(c)}}F_{(c)} \\
\text{Ran}_EF_{(d)}&=\overline{\bigotimes_{c\in\mathbb{C}}}{\Delta^{(d)}_{E_{(c)}}}^{F_{(c)}} \\
\end{align}

米田の補題

ここで,

F_{(d)}= \text{Ran}_{id}F_{(d)}

であるので,

\begin{align}
F_{(d)} &= \text{Ran}_{id}F_{(d)} \\
&= \overline{\bigotimes_{c\in\mathbb{C}}}{\Delta^{(d)}_{id_{(c)}}}^{F_{(c)}} \\
&= \overline{\bigotimes_{c\in\mathbb{C}}}\text{Hom}\left({F_{(c)}},\Delta^{(d)}_{(c)}\right) \\
&= \text{Nat}(F_\mathbb{C},\Delta_\mathbb{C}^{(d)})
\end{align}

つまり,米田の補題を

F_{(d)} = \overline{\bigotimes_{c\in\mathbb{C}}}{\Delta^{(d)}_{(c)}}^{F_{(c)}} \\

このような形式で表すことができる.
また,双対的に余米田の補題を

\begin{align}
F_{(d)}&=\text{Lan}_{id}F_{(d)}\\
&=\overline{\bigoplus_{c\in\mathbb{C}}}\Delta_{(d)}^{id_{(c)}}F_{(c)}\\
&=\overline{\bigoplus_{c\in\mathbb{C}}}\Delta_{(d)}^{(c)}F_{(c)}\\
\end{align}

と表す.
余米田の補題はプロ函手の合成として考えると

F_{(d)}=\overline{\bigoplus_{c\in\mathbb{C}}}\Delta_{(d)}^{(c)}F_{(c)}=\Delta_{(d)}^\mathbb{C}F_\mathbb{C}
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0