11
15

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

CUDA対応したWSL2+VSCodeでディープラーニングの開発環境を作ってみる

Last updated at Posted at 2020-06-20

#CUDA対応したWSL2+VSCodeでディープラーニングの開発環境を作ってみる

概要

WSLことWindows Subsystem for Linuxは、Windowsで社内システムに繋ぎつつLinuxのシステム開発を行う我々サラリーエンジニアの強い味方です。
そんなWSLがWindows Insider Preview 20150.1000からCUDAに対応したという話を聞きつけました。1
今回はWSL2とVSCodeを使ってディープラーニングの開発環境を作ってみようと思います。2
導入環境にはGPUが刺さっていることが前提です。

この記事でやってみること

  1. Windows上にWSL2でUbuntuを導入する
  2. WSL2のUbuntuでNvidia Driver for CUDAを認識する
  3. VSCodeからWSL2の環境を触れるようにする
  4. WSL2上にDockerをインストールして実行環境を構築する
  5. TensorFlow on Dockerの環境をWSL上に構築する

やってみる

1. Insider Previewに参加して最新のPreview Buildを導入する

要はWindows Updateで導入できるのですが、Insider Previewに参加することでプレビュー用の特殊なUpdateを入手することができます。
手順は簡単ですが、そこそこ時間がかかります。
ポイントは、Insiderをファストに設定すること。あとはいつもどおりにWindows Updateを実行するだけで、天から神(Cuda対応のWSL2)が降りてきます。

windows insider program.jpg

一晩寝かせたら無事に新しいバージョンが手に入りました。

indows version.jpg

カーネルチェック
PS C:\Users\hirose.tomoki> wsl --update
更新をチェック中...
利用できる更新はありません。
カーネル バージョン: 4.19.121

カーネルバージョンが4.19.121以上になっていない場合は、Windows Updateの適用が不十分です。
Windows Updateメニューの詳細オプションから他のMicrosoft製品の更新プログラムを受け取るを選択して、改めて更新がないかチェックしてみてください。

2. WSL2を有効化してUbuntuをインストールする

ここの作業は管理者権限のPowerShell上で実行していきます。
この手順に入る前にLinuxカーネルの更新をしておくと安心です。
https://docs.microsoft.com/ja-jp/windows/wsl/wsl2-kernel

手順1. WSL1を有効化

WSL1の有効化
dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /norestart
実行結果
展開イメージのサービスと管理ツール
バージョン: 10.0.20150.1000

イメージのバージョン: 10.0.20150.1000

機能を有効にしています
[==========================100.0%==========================]
操作は正常に完了しました。

手順2. WSL2を有効化

WSL2の有効化
dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /norestart
実行結果
展開イメージのサービスと管理ツール
バージョン: 10.0.20150.1000

イメージのバージョン: 10.0.20150.1000

機能を有効にしています
[==========================100.0%==========================]
操作は正常に完了しました。

有効化できたら一旦Windowsを再起動します。

手順3. WSL2をデフォルトに設定する

WSL2をデフォルト設定
wsl.exe --set-default-version 2

コマンドが実行できたらWSL2が有効化されたので、Ubuntuのインストールを行っていきます。

手順4. Ubuntu on WSLをインストールする

Windows StoreにアクセスしてUbuntuを検索します。今回は仕事でも使っているので18.04LTSにしました。
Windows Storeのアクセス方法がわからない……という方はWin+Rを開いて**ms-windows-store:**を実行するとURIスキームからStore起動が着火します。

winstore ubuntu.jpg winstore ubuntu install.jpg

インストールが終わったらスタートメニューからUbuntuを起動します。

手順5. Ubuntuのセットアップ

無事にUbuntuが起動したのでセットアップを行います。
ユーザ名とPWを設定していきますが、ここでのユーザ名はWindowsと独立している点は注意事項です。

ユーザとパスワードを設定したのでWindows Terminalから開いてみました。
Windows上からunameコマンドが叩けています!
ubuntu uname.jpg

3. NVIDIA Drivers for CUDA on WSLをインストールする

この作業は特に悩むこともないと思いますので、下記URLから辿ってドライバのインストールを進めていきます。
https://developer.nvidia.com/cuda/wsl

nvidia.jpg

今回はver455.41がインストールされました。

4. VSCodeからWSLの環境へアクセスする

とりあえずUbuntu on WSL2とCUDA on WSL2(Preview)が整ったので、続いてはVSCode on WindowsでLinuxの開発ができる環境を作っていきます。
VSCodeをインストールしていない方は、今すぐこちらからどうぞ。

手順1. 拡張機能[Remote -WSL]をインストールする

remote wsl.jpg

Windows側のVSCodeにこちらをインストールしていきます。
WSLが有効化されているのでレコメンドしてくれているのでしょうか。

手順2. WSLからVSCodeを起動する

拡張機能を入れたのはWindowsでしたが、実際に開発するにあたってはWSLから起動していきます。
とりあえずホームディレクトリで起動してみます。
run vscode on wsl2.jpg
すると、新しくVSCodeのウィンドウが立ち上がります。
立ち上がったVSCodeは、下の図のようにWSL:Ubuntu-18.04とあるので、連携がうまく行っていることがわかります。
vscode move wsl2.jpg

何が起きているかというと、WSL2上で起動したVSCodeへWindows上でリモートアクセスしています。
なので、ここで起動したVSCodeでコンソールを開くとPowerShellではなくbashにアタッチします。こうなれば後はただのUbuntuです。

一度起動させると、WSLを起動してcode .せずとも、Ctr+Shift+PのコマンドパレットやCtr+Rの最近使用した項目からwslを検索すると、ショートカットすることができます。

wsl on vscode shotrcut1.jpg wsl on vscode shotrcut.jpg

5. ディープラーニング用の環境構築

ここまで来たらもう一息です。
ようやく本題ですが、ディープラーニング用の環境を作っていきましょう。

手順1. WSL2上にDockerをインストールする

詳しくは解説しませんが、Dockerはここにあるとおりです。

手順がスクリプトにまとまっているので、ダウンロードして実行すればOKです。

手順2. NVIDIA Container Toolkitをインストールする

詳しくは解説しませんので、下記を参考にインストールしてください。

distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
curl -s -L https://nvidia.github.io/libnvidia-container/experimental/$distribution/libnvidia-container-experimental.list | sudo tee /etc/apt/sources.list.d/libnvidia-container-experimental.list

sudo apt update
sudo apt install -y nvidia-docker2

インストールできたらdockerを起動しておきます。

デーモンの起動
# WSLの仕様でsystemctlだと動かないので注意
sudo service docker start

手順3. WSL + Docker + CUDA環境の動作確認

うまく動くかどうか試していきます。
今回はDockerHubのTensorFlowリポジトリからv2.2.0-gpuを利用していきます。

Docker+TensorFlow環境構築
$ docker run --gpus all -it --rm   tensorflow/tensorflow:2.2.0-gpu /bin/bash
________                               _______________
___  __/__________________________________  ____/__  /________      __
__  /  _  _ \_  __ \_  ___/  __ \_  ___/_  /_   __  /_  __ \_ | /| / /
_  /   /  __/  / / /(__  )/ /_/ /  /   _  __/   _  / / /_/ /_ |/ |/ /
/_/    \___//_/ /_//____/ \____//_/    /_/      /_/  \____/____/|__/

$ python
Python 3.6.9 (default, Apr 18 2020, 01:56:04)
[GCC 8.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from tensorflow.python.client import device_lib
>>> device_lib.list_local_devices()

name: "/device:GPU:0"
device_type: "GPU"
memory_limit: 3225865422
locality {
  bus_id: 1
  links {
  }
}

無事に認識されているようです。

出来上がり

開発画面

開発画面はこんな感じです。
下のカラムでbashにつないで、Dockerで作った開発環境へアクセスしています。
今回は省略していますが、VSCode上だけでDockerへのアクセスとGitリポジトリへのアクセスができる上、GPUを搭載したLinux環境での動きも確認できる様になっています。

vs image.jpg

学習させてみる

move.jpg

MNISTだしFC層をちょろと繋いだだけだしで、あまり恩恵受けられていないですね……。
GPUはちゃんと使われていて、CUDA周りのライブラリが読み込まれているので、きちんと動作しているのはわかると思います。

まとめ

CUDA対応したWSL2を利用して、UbuntuのインストールとDocker+VSCodeを使った開発環境の構築まで一気通貫で紹介してきました。

まだプレビュー版ということもあり、nvidia-smiコマンドでログが取れなかったりなど不便な点もありますが、WSLのCUDA対応はかなり凄い更新だと思います。
商品としてAIの導入をするにあたって、Linuxサーバを用意せずにスタンドアロンでローカルマシンで動かせる可能性があるって考えると、ちょっと楽しくなりませんか?

サラリーエンジニアとしては資産管理する物理マシンが減る可能性を想像するだけで震えが止まりません……。

それでは、良いディープラーニングライフを!!

  1. https://devblogs.nvidia.com/announcing-cuda-on-windows-subsystem-for-linux-2/

  2. 公式のWSL2/CUDAインストール方法はこちら

11
15
2

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
11
15

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?