Qiita Teams that are logged in
You are not logged in to any team

Log in to Qiita Team
Community
OrganizationEventAdvent CalendarQiitadon (β)
Service
Qiita JobsQiita ZineQiita Blog
9
Help us understand the problem. What are the problem?

More than 1 year has passed since last update.

@yshi12

pythonで並列処理

並列処理したい

bigdata系の処理をしていると、処理が遅すぎて泣きそうになることが多々。
inのファイルを分割して同じファイルを呼んでもいいけど、もっとスマートにやりたい。

シングルプロセスで二重ループ処理をやってみる。

calcurate_example.py
import time
from multiprocessing import Pool
from multiprocessing import Process

start = time.time()

L = 10000

total = 0
for i in range(L):
    for j in range(L):
        total += i*j

print (total)

elapsed_time = time.time() - start
print ("elapsed_time:{0}".format(elapsed_time)) + "[sec]"

# result
>2499500025000000
>elapsed_time:23.1847140789[sec]

23秒ほどかかってる。

これをマルチプロセスにしてみる

import time
import multiprocessing as mp


# 各プロセスが実行する計算
def subcalc(p): # p = 0,1
    subtotal = 0

    # iの範囲を設定
    ini = L * p / proc
    fin = L * (p+1) / proc

    # 計算を実行
    for i in range(ini, fin):
        for j in range(L):
            subtotal += i * j
    return subtotal

if __name__ == '__main__':
    start = time.time()
    L = 10000
    proc = 2               # 並列プロセス数
    pool = mp.Pool(proc)

    # 各プロセスに subcalc(p) を実行させる
    # ここで p = 0,1
    # callbackには各戻り値がlistとして格納される
    callback = pool.map(subcalc, range(proc))

    # 各戻り値の総和を計算
    total = sum(callback)

    print (total)

    elapsed_time = time.time() - start
    print ("elapsed_time:{0}".format(elapsed_time)) + "[sec]"

> 2499500025000000
> elapsed_time:6.75670814514[sec]

6.7秒。 めっちゃ早くなった!

Why not register and get more from Qiita?
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away
9
Help us understand the problem. What are the problem?