35
26

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

異常検知手法でサイゼリヤの間違い探しを攻略したい

Last updated at Posted at 2021-12-05

はじめに

最近異常検知に関する勉強をしておりますが、奥が深くて理解がスムーズに進みません。

気分転換も兼ねて、2021年12月現在、それなりの精度を誇るSPADEの異常検知手法で間違い探しを攻略することにします。ここではサイゼリヤのキッズメニューにある大人でも難しいといわれる「間違い探し」を題材にします。

環境

  • windows10 home
  • python 3.10

結論

最終的な推論結果は以下のようになりました。
qiita_sample1.PNG
Questionはサイゼリヤのホームページで公開されている間違い探しの題材であり、Anomaly overlay mapは異常度におけるヒートマップを重ねた画像になります。完璧ではありませんが、間違いの個所(すなわち異常と思われる部分)が濃い赤で塗られていますね。

異常検知手法

ここ数年はAIモデルの再学習を必要としない手法が強いです。詳しくは以下の記事をご参照ください。

サイゼリヤの間違い探しを攻略するため、ここではSPADE手法を選択しました。以下、SPADEの特徴解説の抜粋です。

  • 「画素」単位の異常検知 → 異常個所の表示
  • ImageNetで訓練したResNetを利用する(再訓練なし)
  • 正常な画像yyの各画素ppを変換した特徴量F(y,p)F(y,p)を保持する
  • 推論では入力した画像の画素の特徴量ffとF(y,p)F(y,p)のk-Nearest Neighbor distanceで判定
  • 解像度と深い特徴抽出を両立するために、feature pyramidの各層をconcatする

spade.png

データの準備

サイゼリヤのホームページを開きます。間違い探しの問題の中で、2021年9月の最新版(創業当時のサイゼリヤの1号店)をスクショし使用します。

画像の左側(A)を特徴量抽出用として、右側(B)を検証用とします。
特徴量抽出用の画像は3枚程度コピーして、ファイル名を変えて(img0.PNG, img1.PNG, img2.PNGなど適当に)保存しておきます。

サイゼリヤ2.PNG

.
├── img0.PNG # 特徴量抽出用
├── img1.PNG
├── img2.PNG
└── img_val.PNG # 検証用

リポジトリのClone

SPADE含め、PaDim, PatchCoreという別の手法もまとめて実装しているリポジトリがあります。ありがたく使わせていただきます。

git clone https://github.com/h1day/ind_knn_ad.git
cd ind_knn_ad

そのままでは動かなかったのでコードの一部を変更しました。長いので折りたたんでます。

requirements.txt
requirements.txt
streamlit==0.86.0
wget==3.2
matplotlib==3.3.4
timm==0.4.12
click==7.1.2
torch==1.9.0
tqdm==4.61.2
numpy==1.19.5
torchvision==0.10.0
# faiss
Pillow==8.3.1
PyYAML==5.4.1
scikit_learn==0.24.2
data.py
data.py
import os
from os.path import isdir
import tarfile
import wget
from pathlib import Path
from PIL import Image

from torch import tensor
from torchvision.datasets import ImageFolder
from torchvision import transforms
from torch.utils.data import DataLoader

DATASETS_PATH = Path("./datasets")
IMAGENET_MEAN = tensor([.485, .456, .406])
IMAGENET_STD = tensor([.229, .224, .225])

# def mvtec_classes():
#     return [
#         "bottle",
#         "cable",
#         "capsule",
#         "carpet",
#         "grid",
#         "hazelnut",
#         "leather",
#         "metal_nut",
#         "pill",
#         "screw",
#         "tile",
#         "toothbrush",
#         "transistor",
#         "wood",
#         "zipper",
#     ]

def mvtec_classes():
    return [
        "bottle",
    ]

class MVTecDataset:
    def __init__(self, cls : str, size : int = 224):
        self.cls = cls
        self.size = size
        if cls in mvtec_classes():
            self._download()
        self.train_ds = MVTecTrainDataset(cls, size)
        self.test_ds = MVTecTestDataset(cls, size)

    def _download(self):
        if not isdir(DATASETS_PATH / self.cls):
            print(f"   Could not find '{self.cls}' in '{DATASETS_PATH}/'. Downloading ... ")
            url = f"ftp://guest:GU.205dldo@ftp.softronics.ch/mvtec_anomaly_detection/{self.cls}.tar.xz"
            wget.download(url)
            with tarfile.open(f"{self.cls}.tar.xz") as tar:
                tar.extractall(DATASETS_PATH)
            os.remove(f"{self.cls}.tar.xz")
            print("") # force newline
        else:
            print(f"   Found '{self.cls}' in '{DATASETS_PATH}/'\n")

    def get_datasets(self):
        return self.train_ds, self.test_ds

    def get_dataloaders(self):
        return DataLoader(self.train_ds), DataLoader(self.test_ds)

class MVTecTrainDataset(ImageFolder):
    def __init__(self, cls : str, size : int):
        super().__init__(
            root=DATASETS_PATH / cls / "train",
            transform=transforms.Compose([
                transforms.Resize(256, interpolation=transforms.InterpolationMode.BICUBIC),
                transforms.CenterCrop(size),
                transforms.ToTensor(),
                transforms.Normalize(IMAGENET_MEAN, IMAGENET_STD),
            ])
        )
        self.cls = cls
        self.size = size

class MVTecTestDataset(ImageFolder):
    def __init__(self, cls : str, size : int):
        super().__init__(
            root=DATASETS_PATH / cls / "test",
            transform=transforms.Compose([
                transforms.Resize(256, interpolation=transforms.InterpolationMode.BICUBIC),
                transforms.CenterCrop(size),
                transforms.ToTensor(),
                transforms.Normalize(IMAGENET_MEAN, IMAGENET_STD),
            ]),
            target_transform=transforms.Compose([
                transforms.Resize(256, interpolation=transforms.InterpolationMode.NEAREST
                ),
                transforms.CenterCrop(size),
                transforms.ToTensor(),
            ]),
        )
        self.cls = cls
        self.size = size
            
    def __getitem__(self, index):
        path, _ = self.samples[index]
        sample = self.loader(path)
        
        if "good" in path:
            target = Image.new('L', (self.size, self.size))
            sample_class = 0
        else:
            target_path = path.replace("test", "ground_truth")
            target_path = target_path.replace(".png", "_mask.png")
            target = self.loader(target_path)
            sample_class = 1

        if self.transform is not None:
            sample = self.transform(sample)
        if self.target_transform is not None:
            target = self.target_transform(target)

        return sample, target[:1], sample_class

class StreamingDataset:
    """This dataset is made specifically for the streamlit app."""
    def __init__(self, size: int = 256): # __init__(self, size: int = 224):
        self.size = size
        self.transform=transforms.Compose([
                transforms.Resize(256, interpolation=transforms.InterpolationMode.BICUBIC),
                transforms.CenterCrop(size),
                transforms.ToTensor(),
                transforms.Normalize(IMAGENET_MEAN, IMAGENET_STD),
            ])
        self.samples = []
    
    def add_pil_image(self, image : Image):
        image = image.convert('RGB')
        self.samples.append(image)

    def __len__(self):
        return len(self.samples)

    def __getitem__(self, index):
        sample = self.samples[index]
        return (self.transform(sample), tensor(0.))

streamlit_app.py
streamlit_app.py
from contextlib import contextmanager
from io import StringIO
from streamlit.report_thread import REPORT_CONTEXT_ATTR_NAME
from threading import current_thread
import streamlit as st
import sys
from time import sleep

from PIL import Image
import io
import numpy as np
import cv2
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt

sys.path.append('./indad')
from indad.data import MVTecDataset, StreamingDataset
from indad.models import SPADE, PaDiM, PatchCore
from indad.data import IMAGENET_MEAN, IMAGENET_STD

N_IMAGE_GALLERY = 4
N_PREDICTIONS = 2
METHODS = ["SPADE", "PaDiM", "PatchCore"]
BACKBONES = ["efficientnet_b0", "tf_mobilenetv3_small_100"]

# keep the two smallest datasets
mvtec_classes = ["hazelnut_reduced", "transistor_reduced"]

def tensor_to_img(x, normalize=False):
    if normalize:
        x *= IMAGENET_STD.unsqueeze(-1).unsqueeze(-1)
        x += IMAGENET_MEAN.unsqueeze(-1).unsqueeze(-1)
    x =  x.clip(0.,1.).permute(1,2,0).detach().numpy()
    return x

def pred_to_img(x, range):
    range_min, range_max = range
    x -= range_min
    if (range_max - range_min) > 0:
        x /= (range_max - range_min)
    return tensor_to_img(x)

def show_pred(sample, score, fmap, range):
    sample_img = tensor_to_img(sample, normalize=True)
    height, width = sample_img.shape[:2]
    fmap_img_tmp = pred_to_img(fmap, range)
    fmap_img_tmp = cv2.resize(fmap_img_tmp[:,:,0], (height, width), interpolation = cv2.INTER_CUBIC)
    fmap_img = (np.reshape(fmap_img_tmp, (height, width, 1))*255).astype(np.uint8)

    # overlay
    plt.imshow(sample_img)
    plt.imshow(fmap_img, cmap="jet", alpha=0.7)
    plt.axis('off')
    buf = io.BytesIO()
    plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0, transparent=True)
    buf.seek(0)
    overlay_img = Image.open(buf)

    # actual display
    cols = st.columns(3)
    cols[0].subheader("Test sample")
    cols[0].image(sample_img)
    cols[1].subheader("Anomaly map")
    cols[1].image(fmap_img)
    cols[2].subheader("Overlay")
    cols[2].image(overlay_img)

def get_sample_images(dataset, n):
    n_data = len(dataset)
    ans = []
    if n < n_data:
        indexes = np.random.choice(n_data, n, replace=False)
    else:
        indexes = list(range(n_data))
    for index in indexes:
        sample, _ = dataset[index]
        ans.append(tensor_to_img(sample, normalize=True))
    return ans

def main():
    with open("./docs/streamlit_instructions.md","r") as file:
        md_file = file.read()
    st.markdown(md_file)

    st.sidebar.title("Config")

    app_custom_dataset = st.sidebar.checkbox("Custom dataset", False)
    if app_custom_dataset:
        app_custom_train_images = st.sidebar.file_uploader(
            "Select 3 or more TRAINING images.",
            accept_multiple_files=True
        )
        app_custom_test_images = st.sidebar.file_uploader(
            "Select 1 or more TEST images.",
            accept_multiple_files=True
        )
        # null other elements
        app_mvtec_dataset = None
    else:
        app_mvtec_dataset = st.sidebar.selectbox("Choose an MVTec dataset", mvtec_classes)
        # null other elements
        app_custom_train_images = []
        app_custom_test_images = None

    app_method = st.sidebar.selectbox("Choose a method",
        METHODS)

    app_backbone = st.sidebar.selectbox("Choose a backbone",
        BACKBONES)

    manualRange = st.sidebar.checkbox('Manually set color range', value=False)

    if manualRange:
        app_color_min = st.sidebar.number_input("set color min ",-1000,1000, 0)
        app_color_max = st.sidebar.number_input("set color max ",-1000,1000, 200)
        color_range = app_color_min, app_color_max

    app_start = st.sidebar.button("Start")

    if app_start or "reached_test_phase" not in st.session_state:
        st.session_state.train_dataset = None
        st.session_state.test_dataset = None
        st.session_state.sample_images = None
        st.session_state.model = None
        st.session_state.reached_test_phase = False
        st.session_state.test_idx = 0
        # test_cols = None

    if app_start or st.session_state.reached_test_phase:
        # LOAD DATA
        # ---------
        if not st.session_state.reached_test_phase:
            flag_data_ok = False
            if app_custom_dataset:
                if len(app_custom_train_images) > 2 and \
                len(app_custom_test_images) > 0:
                    # test dataset will contain 1 test image
                    train_dataset = StreamingDataset()
                    test_dataset = StreamingDataset()
                    # train images
                    for training_image in app_custom_train_images:
                        bytes_data = training_image.getvalue()
                        train_dataset.add_pil_image(
                            Image.open(io.BytesIO(bytes_data))
                        )
                    # test image
                    for test_image in app_custom_test_images:
                        bytes_data = test_image.getvalue()
                        test_dataset.add_pil_image(
                            Image.open(io.BytesIO(bytes_data))
                        )
                    flag_data_ok = True
                else:
                    st.error("Please upload 3 or more training images and 1 test image.")
            else:
                with st_stdout("info", "Checking or downloading dataset ..."):
                    train_dataset, test_dataset = MVTecDataset(app_mvtec_dataset).get_datasets()
                    st.success(f"Loaded '{app_mvtec_dataset}' dataset.")
                    flag_data_ok = True

            if not flag_data_ok:
                st.stop()
        else:
            train_dataset = st.session_state.train_dataset
            test_dataset = st.session_state.test_dataset

        st.header("Random (healthy) training samples")
        cols = st.columns(N_IMAGE_GALLERY)
        if not st.session_state.reached_test_phase:
            col_imgs = get_sample_images(train_dataset, N_IMAGE_GALLERY)
        else:
            col_imgs = st.session_state.sample_images
        for col, img in zip(cols, col_imgs):
            col.image(img, use_column_width=True)


        # LOAD MODEL
        # ----------

        if not st.session_state.reached_test_phase:
            if app_method == "SPADE":
                model = SPADE(
                    k=3,
                    backbone_name=app_backbone,
                )
            elif app_method == "PaDiM":
                model = PaDiM(
                    d_reduced=75,
                    backbone_name=app_backbone,
                )
            elif app_method == "PatchCore":
                model = PatchCore(
                    f_coreset=.01,
                    backbone_name=app_backbone,
                    coreset_eps=.95,
                )
            st.success(f"Loaded {app_method} model.")
        else:
            model = st.session_state.model

        # TRAINING
        # --------

        if not st.session_state.reached_test_phase:
            with st_stdout("info", "Setting up training ..."):
                model.fit(DataLoader(train_dataset))

        # TESTING
        # -------

        if not st.session_state.reached_test_phase:
            st.session_state.reached_test_phase = True
            st.session_state.sample_images = col_imgs
            st.session_state.model = model
            st.session_state.train_dataset = train_dataset
            st.session_state.test_dataset = test_dataset

        st.session_state.test_idx = st.number_input(
            "Test sample index",
            min_value = 0,
            max_value = len(test_dataset)-1,
        )

        sample, *_ = test_dataset[st.session_state.test_idx]
        img_lvl_anom_score, pxl_lvl_anom_score = model.predict(sample.unsqueeze(0))
        score_range = pxl_lvl_anom_score.min(), pxl_lvl_anom_score.max()
        if not manualRange:
            color_range = score_range
        show_pred(sample, img_lvl_anom_score, pxl_lvl_anom_score, color_range)
        st.write("pixel score min:{:.0f}".format(score_range[0]))
        st.write("pixel score max:{:.0f}".format(score_range[1]))

@contextmanager
def st_redirect(src, dst, msg):
    """https://discuss.streamlit.io/t/cannot-print-the-terminal-output-in-streamlit/6602"""
    placeholder = st.info(msg)
    sleep(3)
    output_func = getattr(placeholder, dst)

    with StringIO() as buffer:
        old_write = src.write

        def new_write(b):
            if getattr(current_thread(), REPORT_CONTEXT_ATTR_NAME, None):
                buffer.write(b)
                output_func(b)
            else:
                old_write(b)

        try:
            src.write = new_write
            yield
        finally:
            src.write = old_write
            placeholder.empty()

@contextmanager
def st_stdout(dst, msg):
    """https://discuss.streamlit.io/t/cannot-print-the-terminal-output-in-streamlit/6602"""
    with st_redirect(sys.stdout, dst, msg):
        yield

@contextmanager
def st_stderr(dst):
    """https://discuss.streamlit.io/t/cannot-print-the-terminal-output-in-streamlit/6602"""
    with st_redirect(sys.stderr, dst):
        yield

if __name__ == "__main__":
    main()

コードの実行

必要なモジュールをインストールしてアプリを立ち上げます。

python3 -m venv venv
.\venv\Scripts\activate
pip install opencv-python
pip install -r requirements.txt
streamlit run streamlit_app.py

キャプチャ.PNG

サイドバーにある「Custom dataset」にチェックを入れると、ドロップボックスが表示されます。Aに特徴量抽出用の画像(3枚以上)を、Bに検証用の画像をドラッグ&ドロップしてデータを登録します。データ登録後、Startボタンを押して推論を開始します。

キャプチャ2.PNG

推論結果が以下のように表示されます。

推論結果.PNG

答え合わせ

右上の瓶や左の鍋の違いに対する感度は低いようですが、その他の間違いは検知できているようです。間違いではない部分も検知してしまっているので、間違い探しの攻略率は7割といったところでしょうか。

サイゼリヤ3.PNG

おわりに

最近の異常検知手法でサイゼリヤの間違い探しをやってみました。AIモデルの再学習を必要としないので、真に検知したい現実のケースでも簡単に試すことができますね。

35
26
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
35
26

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?