Help us understand the problem. What is going on with this article?

AMD社製GPUを用いたTensorFlow環境構築(ROCm導入編)

More than 1 year has passed since last update.

はじめに

AMD GPUを用いてTensorflowのサンプル動作するまでの過程を記載します。
マイニングマシンからの転用でROCmを用いたTensorFlow環境を構築できるか試してみます。
前回の構成ではPCIeの必要要件を満たせておらず、実現できませんでした。
今回は必要要件を満たしたシステムを用いてROCmの導入に成功しました。

次の記事ではTensorFlowの導入からサンプル動作までをやってみました。


本記事は概要版となります。
詳細はAMD社製GPUを用いたTensorFlow環境構築(ROCm導入編):詳細版で紹介しています。


構成

CPU: Celeron G3930
GPU: Radeon Vega 56
Ubuntu : 18.04 LTS(Kernel 4.15)
ROCm Version: 2.1

Ubuntuの導入

ROCmの導入

・システムを最新状態にし、再起動

・aptリポジトリにROCmを追加

・aptリポジトリの更新と rocm-dkmsのインストール

・ユーザー権限の設定

・システム再起動後、ROCmのインストールが正しく完了したかの確認

・実行するとGPUを認識していることがわかります。

$/opt/rocm/bin/rocminfo 
*******                  
Agent 2                  
*******                  
  Name:                    gfx900                             
  Vendor Name:             AMD                                
  Feature:                 KERNEL_DISPATCH                    
  Profile:                 BASE_PROFILE                       
  Float Round Mode:        NEAR                               
  Max Queue Number:        128                                
  Queue Min Size:          4096                               
  Queue Max Size:          131072                             
  Queue Type:              MULTI                              
  Node:                    1                                  
  Device Type:             GPU                                
  Cache Info:              
    L1:                      16KB                               
  Chip ID:                 26751                              
  Cacheline Size:          64                                 
  Max Clock Frequency (MHz):1590                               
  BDFID:                   2560                               
  Compute Unit:            56                                 
  Features:                KERNEL_DISPATCH 
  Fast F16 Operation:      FALSE                              
  Wavefront Size:          64                                 
  Workgroup Max Size:      1024                               
  Workgroup Max Size Per Dimension:
    Dim[0]:                  67109888                           
    Dim[1]:                  167773184                          
    Dim[2]:                  0                                  
  Grid Max Size:           4294967295                         
  Waves Per CU:            40                                 
  Max Work-item Per CU:    2560                               
  Grid Max Size per Dimension:
    Dim[0]:                  4294967295                         
    Dim[1]:                  4294967295                         
    Dim[2]:                  4294967295                         
  Max number Of fbarriers Per Workgroup:32                                 
  Pool Info:               
    Pool 1                   
      Segment:                 GLOBAL; FLAGS: COARSE GRAINED      
      Size:                    8372224KB                          
      Allocatable:             TRUE                               
      Alloc Granule:           4KB                                
      Alloc Alignment:         4KB                                
      Acessible by all:        FALSE                              
    Pool 2                   
      Segment:                 GROUP                              
      Size:                    64KB                               
      Allocatable:             FALSE                              
      Alloc Granule:           0KB                                
      Alloc Alignment:         0KB                                
      Acessible by all:        FALSE                              
  ISA Info:                
    ISA 1                    
      Name:                    amdgcn-amd-amdhsa--gfx900          
      Machine Models:          HSA_MACHINE_MODEL_LARGE            
      Profiles:                HSA_PROFILE_BASE                   
      Default Rounding Mode:   NEAR                               
      Default Rounding Mode:   NEAR                               
      Fast f16:                TRUE                               
      Workgroup Max Dimension: 
        Dim[0]:                  67109888                           
        Dim[1]:                  1024                               
        Dim[2]:                  16777217                           
      Workgroup Max Size:      1024                               
      Grid Max Dimension:      
        x                        4294967295                         
        y                        4294967295                         
        z                        4294967295                         
      Grid Max Size:           4294967295                         
      FBarrier Max Size:       32                                 
*** Done ***             

・こちらでも問題なさそうです。

$ /opt/rocm/opencl/bin/x86_64/clinfo 
Number of platforms:                 1
  Platform Profile:              FULL_PROFILE
  Platform Version:              OpenCL 2.1 AMD-APP (2814.0)
  Platform Name:                 AMD Accelerated Parallel Processing
  Platform Vendor:               Advanced Micro Devices, Inc.
  Platform Extensions:               cl_khr_icd cl_amd_event_callback cl_amd_offline_devices 


  Platform Name:                 AMD Accelerated Parallel Processing
Number of devices:               1
  Device Type:                   CL_DEVICE_TYPE_GPU
  Vendor ID:                     1002h
  Board name:                    Vega [Radeon RX Vega]
  Device Topology:               PCI[ B#10, D#0, F#0 ]
  Max compute units:                 56
  Max work items dimensions:             3
    Max work items[0]:               1024
    Max work items[1]:               1024
    Max work items[2]:               1024
  Max work group size:               256
  Preferred vector width char:           4
  Preferred vector width short:          2
  Preferred vector width int:            1
  Preferred vector width long:           1
  Preferred vector width float:          1
  Preferred vector width double:         1
  Native vector width char:          4
  Native vector width short:             2
  Native vector width int:           1
  Native vector width long:          1
  Native vector width float:             1
  Native vector width double:            1
  Max clock frequency:               1590Mhz
  Address bits:                  64
  Max memory allocation:             7287183769
  Image support:                 Yes
  Max number of images read arguments:       128
  Max number of images write arguments:      8
  Max image 2D width:                16384
  Max image 2D height:               16384
  Max image 3D width:                2048
  Max image 3D height:               2048
  Max image 3D depth:                2048
  Max samplers within kernel:            26751
  Max size of kernel argument:           1024
  Alignment (bits) of base address:      1024
  Minimum alignment (bytes) for any datatype:    128
  Single precision floating point capability
    Denorms:                     Yes
    Quiet NaNs:                  Yes
    Round to nearest even:           Yes
    Round to zero:               Yes
    Round to +ve and infinity:           Yes
    IEEE754-2008 fused multiply-add:         Yes
  Cache type:                    Read/Write
  Cache line size:               64
  Cache size:                    16384
  Global memory size:                8573157376
  Constant buffer size:              7287183769
  Max number of constant args:           8
  Local memory type:                 Scratchpad
  Local memory size:                 65536
  Max pipe arguments:                16
  Max pipe active reservations:          16
  Max pipe packet size:              2992216473
  Max global variable size:          7287183769
  Max global variable preferred total size:  8573157376
  Max read/write image args:             64
  Max on device events:              1024
  Queue on device max size:          8388608
  Max on device queues:              1
  Queue on device preferred size:        262144
  SVM capabilities:              
    Coarse grain buffer:             Yes
    Fine grain buffer:               Yes
    Fine grain system:               No
    Atomics:                     No
  Preferred platform atomic alignment:       0
  Preferred global atomic alignment:         0
  Preferred local atomic alignment:      0
  Kernel Preferred work group size multiple:     64
  Error correction support:          0
  Unified memory for Host and Device:        0
  Profiling timer resolution:            1
  Device endianess:              Little
  Available:                     Yes
  Compiler available:                Yes
  Execution capabilities:                
    Execute OpenCL kernels:          Yes
    Execute native function:             No
  Queue on Host properties:              
    Out-of-Order:                No
    Profiling :                  Yes
  Queue on Device properties:                
    Out-of-Order:                Yes
    Profiling :                  Yes
  Platform ID:                   0x7fa588403a30
  Name:                      gfx900
  Vendor:                    Advanced Micro Devices, Inc.
  Device OpenCL C version:           OpenCL C 2.0 
  Driver version:                2814.0 (HSA1.1,LC)
  Profile:                   FULL_PROFILE
  Version:                   OpenCL 1.2 
  Extensions:                    cl_khr_fp64 cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics cl_khr_local_int32_base_atomics cl_khr_local_int32_extended_atomics cl_khr_int64_base_atomics cl_khr_int64_extended_atomics cl_khr_3d_image_writes cl_khr_byte_addressable_store cl_khr_fp16 cl_khr_gl_sharing cl_amd_device_attribute_query cl_amd_media_ops cl_amd_media_ops2 cl_khr_subgroups cl_khr_depth_images cl_amd_copy_buffer_p2p cl_amd_assembly_program 

まとめ

上記手順で無事にROCmの導入及びGPUの認識ができたようなので、
次回以降、TensorFlowの導入、サンプル動作を進めたいと思います。

ymiura17
Why not register and get more from Qiita?
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away