はじめに
AMD GPUを用いてTensorflowのサンプル動作するまでの過程を記載します。
マイニングマシンからの転用でROCmを用いたTensorFlow環境を構築できるか試してみます。
前回の構成ではPCIeの必要要件を満たせておらず、実現できませんでした。
今回は必要要件を満たしたシステムを用いてROCmの導入に成功しました。
次の記事ではTensorFlowの導入からサンプル動作までをやってみました。
本記事は概要版となります。
詳細はAMD社製GPUを用いたTensorFlow環境構築(ROCm導入編):詳細版で紹介しています。
構成
CPU: Celeron G3930
GPU: Radeon Vega 56
Ubuntu : 18.04 LTS(Kernel 4.15)
ROCm Version: 2.1
Ubuntuの導入
#ROCmの導入
・システムを最新状態にし、再起動
・aptリポジトリにROCmを追加
・aptリポジトリの更新と rocm-dkms
のインストール
・ユーザー権限の設定
・システム再起動後、ROCmのインストールが正しく完了したかの確認
・実行するとGPUを認識していることがわかります。
$/opt/rocm/bin/rocminfo
*******
Agent 2
*******
Name: gfx900
Vendor Name: AMD
Feature: KERNEL_DISPATCH
Profile: BASE_PROFILE
Float Round Mode: NEAR
Max Queue Number: 128
Queue Min Size: 4096
Queue Max Size: 131072
Queue Type: MULTI
Node: 1
Device Type: GPU
Cache Info:
L1: 16KB
Chip ID: 26751
Cacheline Size: 64
Max Clock Frequency (MHz):1590
BDFID: 2560
Compute Unit: 56
Features: KERNEL_DISPATCH
Fast F16 Operation: FALSE
Wavefront Size: 64
Workgroup Max Size: 1024
Workgroup Max Size Per Dimension:
Dim[0]: 67109888
Dim[1]: 167773184
Dim[2]: 0
Grid Max Size: 4294967295
Waves Per CU: 40
Max Work-item Per CU: 2560
Grid Max Size per Dimension:
Dim[0]: 4294967295
Dim[1]: 4294967295
Dim[2]: 4294967295
Max number Of fbarriers Per Workgroup:32
Pool Info:
Pool 1
Segment: GLOBAL; FLAGS: COARSE GRAINED
Size: 8372224KB
Allocatable: TRUE
Alloc Granule: 4KB
Alloc Alignment: 4KB
Acessible by all: FALSE
Pool 2
Segment: GROUP
Size: 64KB
Allocatable: FALSE
Alloc Granule: 0KB
Alloc Alignment: 0KB
Acessible by all: FALSE
ISA Info:
ISA 1
Name: amdgcn-amd-amdhsa--gfx900
Machine Models: HSA_MACHINE_MODEL_LARGE
Profiles: HSA_PROFILE_BASE
Default Rounding Mode: NEAR
Default Rounding Mode: NEAR
Fast f16: TRUE
Workgroup Max Dimension:
Dim[0]: 67109888
Dim[1]: 1024
Dim[2]: 16777217
Workgroup Max Size: 1024
Grid Max Dimension:
x 4294967295
y 4294967295
z 4294967295
Grid Max Size: 4294967295
FBarrier Max Size: 32
*** Done ***
・こちらでも問題なさそうです。
$ /opt/rocm/opencl/bin/x86_64/clinfo
Number of platforms: 1
Platform Profile: FULL_PROFILE
Platform Version: OpenCL 2.1 AMD-APP (2814.0)
Platform Name: AMD Accelerated Parallel Processing
Platform Vendor: Advanced Micro Devices, Inc.
Platform Extensions: cl_khr_icd cl_amd_event_callback cl_amd_offline_devices
Platform Name: AMD Accelerated Parallel Processing
Number of devices: 1
Device Type: CL_DEVICE_TYPE_GPU
Vendor ID: 1002h
Board name: Vega [Radeon RX Vega]
Device Topology: PCI[ B#10, D#0, F#0 ]
Max compute units: 56
Max work items dimensions: 3
Max work items[0]: 1024
Max work items[1]: 1024
Max work items[2]: 1024
Max work group size: 256
Preferred vector width char: 4
Preferred vector width short: 2
Preferred vector width int: 1
Preferred vector width long: 1
Preferred vector width float: 1
Preferred vector width double: 1
Native vector width char: 4
Native vector width short: 2
Native vector width int: 1
Native vector width long: 1
Native vector width float: 1
Native vector width double: 1
Max clock frequency: 1590Mhz
Address bits: 64
Max memory allocation: 7287183769
Image support: Yes
Max number of images read arguments: 128
Max number of images write arguments: 8
Max image 2D width: 16384
Max image 2D height: 16384
Max image 3D width: 2048
Max image 3D height: 2048
Max image 3D depth: 2048
Max samplers within kernel: 26751
Max size of kernel argument: 1024
Alignment (bits) of base address: 1024
Minimum alignment (bytes) for any datatype: 128
Single precision floating point capability
Denorms: Yes
Quiet NaNs: Yes
Round to nearest even: Yes
Round to zero: Yes
Round to +ve and infinity: Yes
IEEE754-2008 fused multiply-add: Yes
Cache type: Read/Write
Cache line size: 64
Cache size: 16384
Global memory size: 8573157376
Constant buffer size: 7287183769
Max number of constant args: 8
Local memory type: Scratchpad
Local memory size: 65536
Max pipe arguments: 16
Max pipe active reservations: 16
Max pipe packet size: 2992216473
Max global variable size: 7287183769
Max global variable preferred total size: 8573157376
Max read/write image args: 64
Max on device events: 1024
Queue on device max size: 8388608
Max on device queues: 1
Queue on device preferred size: 262144
SVM capabilities:
Coarse grain buffer: Yes
Fine grain buffer: Yes
Fine grain system: No
Atomics: No
Preferred platform atomic alignment: 0
Preferred global atomic alignment: 0
Preferred local atomic alignment: 0
Kernel Preferred work group size multiple: 64
Error correction support: 0
Unified memory for Host and Device: 0
Profiling timer resolution: 1
Device endianess: Little
Available: Yes
Compiler available: Yes
Execution capabilities:
Execute OpenCL kernels: Yes
Execute native function: No
Queue on Host properties:
Out-of-Order: No
Profiling : Yes
Queue on Device properties:
Out-of-Order: Yes
Profiling : Yes
Platform ID: 0x7fa588403a30
Name: gfx900
Vendor: Advanced Micro Devices, Inc.
Device OpenCL C version: OpenCL C 2.0
Driver version: 2814.0 (HSA1.1,LC)
Profile: FULL_PROFILE
Version: OpenCL 1.2
Extensions: cl_khr_fp64 cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics cl_khr_local_int32_base_atomics cl_khr_local_int32_extended_atomics cl_khr_int64_base_atomics cl_khr_int64_extended_atomics cl_khr_3d_image_writes cl_khr_byte_addressable_store cl_khr_fp16 cl_khr_gl_sharing cl_amd_device_attribute_query cl_amd_media_ops cl_amd_media_ops2 cl_khr_subgroups cl_khr_depth_images cl_amd_copy_buffer_p2p cl_amd_assembly_program
まとめ
上記手順で無事にROCmの導入及びGPUの認識ができたようなので、
次回以降、TensorFlowの導入、サンプル動作を進めたいと思います。