4
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

3. Pythonによる自然言語処理 4-1. KWICによる語用の分析

Last updated at Posted at 2020-12-24
  • KWIC (keyword in context) は、あるキーワードが出てくる場所を取得するものですが、その前後の文脈を併せて取得してくれるという利点があります。
  • つまり、そのキーワードがどのような文脈の中で使われているかを知ることで、定性的な解釈を深めるような用途に利用できます。
  • KWIC は NLTKConcordanceIndex クラスを利用して簡単に行えるもので、NLTK (Natural Language Toolkit) は、Pythonで自然言語処理を行うためのライブラリの一つです。

#⑴ コーパスの取得

####❶ライブラリのインポート

import re # 正規表現の操作
import zipfile # zipファイルの操作
import urllib.request # Web上のデータを取得
import os.path # パス名の操作
import glob # ファイルパス名の取得

####❷ファイルの取得、読み込み

  • zipファイルを取得し、解凍して保存し、その保存したファイルのパスを取得するという一連のメソッドを定義します。
def download(URL):
    # zipファイルのダウンロード
    zip_file = re.split(r'/', URL)[-1]
    urllib.request.urlretrieve(URL, zip_file)
    dir = os.path.splitext(zip_file)[0]

    # zipファイルの解凍と保存
    with zipfile.ZipFile(zip_file) as zip_object:
        zip_object.extractall(dir)

    os.remove(zip_file)

    # 保存したファイルのパスを取得
    path = os.path.join(dir,'*.txt')
    list = glob.glob(path)
    return list[0]
  • ファイルを読み込み、本文だけを抽出して、さらにノイズを除去するという一連のメソッドを定義します。
def convert(download_text):
    # ファイル読み込み
    data = open(download_text, 'rb').read()
    text = data.decode('shift_jis')

    # 本文の抽出
    text = re.split(r'\-{5,}', text)[2]  
    text = re.split(r'底本:', text)[0]
    text = re.split(r'[#改ページ]', text)[0]

    # ノイズ削除
    text = re.sub(r'《.+?》', '', text)
    text = re.sub(r'[#.+?]', '', text)
    text = re.sub(r'', '', text)
    text = re.sub(r'\r\n', '', text)
    text = re.sub(r'\u3000', '', text)  
    text = re.sub(r'', '', text) 
    text = re.sub(r'', '', text)
    text = re.sub(r'', '', text)
    text = re.sub(r'', '', text)

    return text
URL = 'https://www.aozora.gr.jp/cards/000081/files/43737_ruby_19028.zip'

download_file = download(URL)
text = convert(download_file)

print(text)
  • download メソッドに URL を指定してファイルを取り込み、それを convert メソッドに渡して本文のみ抽出した結果は以下の通りです。
    image.png

#⑵ 形態素解析による分かち書き

  • NLTK の ConcordanceIndex クラスは英語の処理を前提としたものなので、日本語の文章を MeCab で分かち書きにして単語間が空白で区切られた形式に変換します。
  • ちなみにconcordance は、主に「一致」という意味で用いられます。

####❶MeCabのインストール

!apt install aptitude
!aptitude install mecab libmecab-dev mecab-ipadic-utf8 git make curl xz-utils file -y
!pip install mecab-python3==0.7

####❷単語に分割

  • MeCab.Tagger クラスに分かち書き出力モード -Owakati を指定してインスタンスを生成し、次いで parse メソッドにより単語で区切ります。
import MeCab

mecab = MeCab.Tagger("-Owakati")
words = mecab.parse(text).split()

image.png

####❸分かち書き

  • さらに join を使って、半角スペースを区切り文字として単語を連結してやります。
doc = ' '.join(words)
print(doc)

image.png

#⑶ KWICの実行
####❶ nltk によるトークン化

  • ここで nltk をインポートしますが、併せて punkt というトークナイザをダウンロードしておかないと動作しません。
  • 分かち書きされた docNLTK でトークン化して text フォーマットに変換します。
import nltk
nltk.download('punkt')

text_ = nltk.Text(nltk.word_tokenize(doc))

####❷ KWIC 形式の出力

  • 例として、キーワードを「ジョバンニ」と指定します。
  • ConcordanceIndex クラスに入力テキストを text_ と指定してインスタンスを生成し、キーワードにもとづいて KWIC 形式の出力を表示させます。
word = 'ジョバンニ'

# インスタンスを生成し、入力テキストを指定
c = nltk.text.ConcordanceIndex(text_)

# キーワードでKWIC形式を表示
c.print_concordance(word, width=40, lines=50)

image.png

  • KWIC形式を表示させる print_concordance メソッドは、width表示の幅lines最大行数を指定できます。ここではマッチした 196 箇所をすべて表示させるようにしました。
  • また次の offsets メソッドによって元のテキストにおけるキーワードの位置情報を取得できます。本来の用途である検索の結果がこちらになります。
print(c.offsets(word))

image.png


  • 個人的には、コロケーションなどを行った後に、分析を深堀する目的で補完的に活用した経験があります。ただし、リサーチデータなどコーパスがあまり大きくなく、また重要な単語のいくつかがネガ・ポジの両側面をもっている場合でした。
  • つまり簡易的に単語のネガポジ分析を行なったわけですが、次に、いわゆる感情分析(感情値の計算)の手法について見ていきたいと思います。
4
3
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
4
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?