0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

統計学実践ワークブック P.55 例3

Last updated at Posted at 2021-07-28

$ M_{n} = max\{ X_{1}, X_{2}, X_{3},\cdots, M_{n} \} $ の分布を $G(x)$ と置く。

問題文より

$$G(x) = {(1-e^{-x})}^{n}$$

ここで、$ x = y + \log n $ とする。

$$G(x) = {(1-e^{-(y+\log n)})}^{n}$$

$y$を固定したまま、$n \to \infty$ としていくと

$$G(x)= \lim_{n \to \infty}{(1-e^{-(y+\log n)})}^{n}$$

$$= \lim_{n \to \infty}{(1-e^{-y} \cdot e^{-\log n})}^{n}$$

$$= \lim_{n \to \infty}{(1-\frac{e^{-y}}{e^{\log n}})}^{n}$$

ネイピア数と自然対数の公式より

$$e^{\log n} = n$$

よって

$$= \lim_{n \to \infty}{(1-\frac{e^{-y}}{n})}^{n}$$

$$= \lim_{n \to \infty}\{{(1-\frac{e^{-y}}{n})}^{- \frac{n}{e^{-y}}}\}^{-e^{-y}}$$

ここで、極限の公式より

$$\lim_{n \to \infty}{(1+\frac{1}{n})}^{n} = e$$

一般化した式は

$$\lim_{n \to \infty}{(1\pm\frac{a}{n})}^{\pm\frac{n}{a}} = e$$

$a$ に $e^{-y}$ を代入すると

$$\lim_{n \to \infty}\{{(1-\frac{e^{-y}}{n})}^{- \frac{n}{e^{-y}}}\}^{-e^{-y}}$$

$$= e^{-e^{-y}}$$

よって

$$G(x) = e^{-e^{-y}}$$

$x = y + \log n$ より

$$y = x - \log n$$

$x$ の最大値 $M_{n}$ を代入して

$$y = M_{n} -\log n$$

これは、ガンベル分布に収束する。

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?