0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

https://rb.gy/evi0uv

Posted at

TransformerモデルとTensorFlowを用いた自然言語処理(NLP)

はじめに

Transformerは、自然言語処理(NLP)における画期的なモデルであり、BERTやGPTなどの多くの最新AIモデルの基盤となっています。本記事では、TensorFlowを使用してTransformerモデルを構築し、テキスト分類タスクを実装する方法を紹介します。

Transformerの基本概念

Transformerは、以下の主要なコンポーネントから構成されます。

  • Self-Attention: 文中の単語同士の関係を捉えるメカニズム
  • Positional Encoding: 単語の順序情報をモデルに組み込む技術
  • Multi-Head Attention: 異なる視点からテキストを処理
  • Feed Forward Network: 非線形変換を行う層

TensorFlowでのTransformerの実装

まず、Transformerの基本構造を作成します。

import tensorflow as tf
from tensorflow.keras.layers import Dense, LayerNormalization, Dropout

class MultiHeadSelfAttention(tf.keras.layers.Layer):
    def __init__(self, d_model, num_heads):
        super(MultiHeadSelfAttention, self).__init__()
        self.num_heads = num_heads
        self.d_model = d_model
        assert d_model % num_heads == 0
        self.depth = d_model // num_heads
        self.wq = Dense(d_model)
        self.wk = Dense(d_model)
        self.wv = Dense(d_model)
        self.dense = Dense(d_model)
    
    def call(self, inputs):
        batch_size = tf.shape(inputs)[0]
        q = self.wq(inputs)
        k = self.wk(inputs)
        v = self.wv(inputs)
        q = tf.reshape(q, (batch_size, -1, self.num_heads, self.depth))
        k = tf.reshape(k, (batch_size, -1, self.num_heads, self.depth))
        v = tf.reshape(v, (batch_size, -1, self.num_heads, self.depth))
        scores = tf.matmul(q, k, transpose_b=True) / tf.math.sqrt(float(self.depth))
        weights = tf.nn.softmax(scores, axis=-1)
        output = tf.matmul(weights, v)
        output = tf.reshape(output, (batch_size, -1, self.d_model))
        return self.dense(output)

Transformerエンコーダの実装

次に、Transformerエンコーダを構築します。

class TransformerEncoderLayer(tf.keras.layers.Layer):
    def __init__(self, d_model, num_heads, dff, rate=0.1):
        super(TransformerEncoderLayer, self).__init__()
        self.mha = MultiHeadSelfAttention(d_model, num_heads)
        self.ffn = tf.keras.Sequential([
            Dense(dff, activation='relu'),
            Dense(d_model)
        ])
        self.norm1 = LayerNormalization(epsilon=1e-6)
        self.norm2 = LayerNormalization(epsilon=1e-6)
        self.dropout1 = Dropout(rate)
        self.dropout2 = Dropout(rate)
    
    def call(self, x):
        attn_output = self.mha(x)
        attn_output = self.dropout1(attn_output)
        out1 = self.norm1(x + attn_output)
        ffn_output = self.ffn(out1)
        ffn_output = self.dropout2(ffn_output)
        return self.norm2(out1 + ffn_output)

テキスト分類タスクへの応用

Transformerエンコーダを活用し、テキスト分類モデルを構築します。

class TextClassifier(tf.keras.Model):
    def __init__(self, vocab_size, d_model, num_heads, dff, num_classes):
        super(TextClassifier, self).__init__()
        self.embedding = tf.keras.layers.Embedding(vocab_size, d_model)
        self.encoder = TransformerEncoderLayer(d_model, num_heads, dff)
        self.global_avg_pool = tf.keras.layers.GlobalAveragePooling1D()
        self.classifier = Dense(num_classes, activation='softmax')
    
    def call(self, x):
        x = self.embedding(x)
        x = self.encoder(x)
        x = self.global_avg_pool(x)
        return self.classifier(x)

まとめ

TensorFlowを使用してTransformerの基本的な構造を実装し、テキスト分類タスクへの応用を紹介しました。BERTやGPTのような高度なモデルも、この基本概念を応用することで理解しやすくなります。

0
0
1

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?