LoginSignup
6
5

More than 5 years have passed since last update.

1 $x=1+\varepsilon x^{5}$

1 $\varepsilon\ll1$であるならば、$x\thickapprox1$である。

2 摂動項は第一項より十分小さいので、第一項を$x$として摂動項の$x$に代入できる。よって$x = 1+\varepsilon$

3 更に精度の高い近似解を得るためには、1次近似解をもとの式の摂動項$\varepsilon x^{5}$
に代入すればよい。

x   =   1+\varepsilon x^{5}\\
f\left(x\right) =   1+\varepsilon x^{5}\\
    =   1+5\varepsilon^{4}x+10\varepsilon\\
f'\left(x\right)    =   5\varepsilon x^{4}\\
f''\left(x\right)   =   20\varepsilon x^{3}\\
    \thickapprox    1+\varepsilon\left(1+\varepsilon\right)^{5}

4 このプロセスを体系的に行うために、代数方程式の解を微小パラメータのべき級数

x   =   1+\varepsilon x_{1}+\varepsilon^{2}x_{2}+\varepsilon^{3}x_{3}+\cdots

に展開し、その展開係数$x_{1},x_{2},x_{3}\cdots$
を求めることにする。上式を下の代数方程式に代入すると$1+\varepsilon x_{1}+\varepsilon^{2}x_{2}+\varepsilon^{3}x_{3}+\cdots = 1+\varepsilon\left(1+\varepsilon x_{1}+\varepsilon^{2}x_{2}+\varepsilon^{3}x_{3}+\cdots\right)^{5}$
を得る。式を微小パラメータ$\varepsilon$のベキの等しい項毎に整理すると$1+\varepsilon x_{1}+\varepsilon^{2}x_{2}+\varepsilon^{3}x_{3}+\cdots = 1+\varepsilon+5\varepsilon^{2}x_{1}+\varepsilon^{3}\left(10x_{1}^{2}+5x_{2}\right)+\cdots$
すなわち、

\varepsilon\left(x_{1}-1\right)+\varepsilon^{2}\left(x_{2}-5\varepsilon^{2}x_{1}\right)+\varepsilon^{3}\left(x_{3}-10x_{1}^{2}+5x_{2}\right)    +\cdots=    0

となる。パラメータ$\varepsilon$の恒等式であるから、$\varepsilon$の全ての次数のベキの係数が$\varepsilon$でなければならない。したがって、

x_{1}-1 =   0\\
x_{2}-5x_{1}    =   0\\
x_{3}-10x_{1}^{2}-5x_{2}    =   0\\

と漸化式を得る。これから

x_{1}   =   1\\
x_{2}   =   5x_{1}=5\\
x_{3}   =   10x_{1}^{2}-5x_{2}=35

よって$x = 1+\varepsilon+5\varepsilon^{2}+35\varepsilon^{3}+\cdots$

6
5
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
6
5