Help us understand the problem. What is going on with this article?

Tensorflowでエラー「tensorflow error KeyError: “The name 'import/Mul' refers to an Operation not in the graph.”」が出た時

More than 1 year has passed since last update.


TensorFlowで画像認識「〇〇判別機」を作る - Qiita


python --image xxx.jpg --graph retrained_graph.pb --labels retrained_labels.txt


 /Users/xxx/anaconda3/lib/python3.6/site-packages/h5py/ FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
      from ._conv import register_converters as _register_converters
    2018-07-11 00:39:22.028051: I tensorflow/core/platform/] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
    Traceback (most recent call last):
      File "", line 131, in 
        input_operation = graph.get_operation_by_name(input_name)
      File "/Users/xxx/tensorFlow/lib/python3.6/site-packages/tensorflow/python/framework/", line 3718, in get_operation_by_name
        return self.as_graph_element(name, allow_tensor=False, allow_operation=True)
      File "/Users/xxx/tensorFlow/lib/python3.6/site-packages/tensorflow/python/framework/", line 3590, in as_graph_element
        return self._as_graph_element_locked(obj, allow_tensor, allow_operation)
      File "/Users/xxx/tensorFlow/lib/python3.6/site-packages/tensorflow/python/framework/", line 3650, in _as_graph_element_locked
        "graph." % repr(name))
    KeyError: "The name 'import/Mul' refers to an Operation not in the graph."


KeyError: "The name 'import/Mul' refers to an Operation not in the graph."


      input_height = 299
      input_width = 299
      input_mean = 0
      input_std = 255
      input_layer = "Mul"
      output_layer = "final_result"



python --image cat3.jpg --graph retrained_graph.pb --labels retrained_labels.txt --input_layer=Placeholder 
プログラミングはエンタテイメントだ! 楽しむことがたいせつ。 興味のおもむくままにやりましょう。 最近のロールはプロジェクトマネージャ、ITコンサルタントです。
Why not register and get more from Qiita?
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away