0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

2.16(難) 分布関数,期待値の演算

Last updated at Posted at 2021-07-19

1.方針

XがYよりも確率的に大きい,という条件から,期待値をP[X>t],P[Y>t]を使った形で書けないか考える.すると,2.7で証明した

\begin{align}
\mathbb{E}_{X\sim f_X}[X]&= \int_0^\infty\{1-F_X(x)\}dx-\int_{-\infty}^0F_X(x)dx\\
&= \int_0^\infty P[t\leq X]dt-\int_{-\infty}^0\{1-P[t\leq X]\}dt
\end{align}

を用いることができる.ただ,これを初見で思いつくのは無理.

1.答案

\begin{align}
\mathbb{E}_{X\sim f_X}[X]-\mathbb{E}_{Y\sim f_Y}[Y]&=\int_0^\infty P[t\leq X]dt-\int_{-\infty}^0\{1-P[t\leq X]\}dt\\
&\ \ \ \  -\int_0^\infty P[t\leq Y]dt+\int_{-\infty}^0\{1-P[t\leq Y]\}dt\\
&= \int_0^\infty\{P[t\leq X]-P[t\leq Y]\}dt+\int_{-\infty}^0\{P[t\leq X]-P[t\leq Y]\}dt\\
&= \int_{-\infty}^\infty \{P[t\leq X]-P[t\leq Y]\}dt
\end{align}

今,任意の実数tについて

P[t\leq X]\geq P[t\leq Y]

が成り立つのだから

\mathbb{E}_{X\sim f_X}-\mathbb{E}_{Y\sim f_Y}[Y]\geq 0

2.方針

\begin{align}
x=F_X^{-1}(t)&\Leftrightarrow t=F_X(x)\\
&\Leftrightarrow t=P[X\leq x]\\
y=F_Y^{-1}(t)&\Leftrightarrow t=P[Y\leq y]
\end{align}

であることに注意する.

2.答案

x=F_X^{-1}(t),\ y=F_Y^{-1}(t)

と置く.今,任意の定数cについて

P[X\leq c]\leq P[Y\leq c]

が成り立つのだから任意の

t=P[X\leq x]=P[Y\leq y]

についてx=>yと言える.

参考文献

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?