0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

バイナリ(2進数)と整数表現: ビット数と範囲の関係

Posted at

事前知識

コンピュータでは、データをバイナリ(2進数)で表現します。
バイナリは、0と1の2つの数字(ビット)を使用して、数値やデータを表現します。
※これらのビットは、コンピューター内部の電気回路におけるオン(1)とオフ(0)の状態を表しています。

0と1の2つの数字(ビット)を使い、各桁は2のべき乗に基づいています。
例えば、10進数の5はバイナリで101になります。※(1 × 2^2) + (0 × 2^1) + (1 × 2^0) = 4 + 0 + 1 = 5

この記事では、ビット数が異なる場合に、1から20までの整数をどのようにバイナリで表現するかを示し、ビット数と表現範囲の関係について説明します。

バイナリ(2進数)での整数表現

以下の表は、1ビットから5ビットまでのバイナリで、1から20までの整数(10進数) を表現したものです。
※ただし、1~4ビットでは、1から20までの整数をすべて表現できない。

整数(10進数) 1ビット 2ビット 3ビット 4ビット 5ビット
0 0 00 000 0000 00000
1 1 01 001 0001 00001
2 - 10 010 0010 00010
3 - 11 011 0011 00011
4 - - 100 0100 00100
5 - - 101 0101 00101
6 - - 110 0110 00110
7 - - 111 0111 00111
8 - - - 1000 01000
9 - - - 1001 01001
10 - - - 1010 01010
11 - - - 1011 01011
12 - - - 1100 01100
13 - - - 1101 01101
14 - - - 1110 01110
15 - - - 1111 01111
16 - - - - 10000
17 - - - - 10001
18 - - - - 10010
19 - - - - 10011
20 - - - - 10100
... ... ... ... ... ...

ビット数と範囲の関係

ビット数が増えると、表現できる整数の範囲が広がります。
nビットのバイナリで表現できる整数の範囲は、0から(2^n)-1までです。
例えば、3ビットの場合は0から7まで、4ビットの場合は0から15まで、5ビットの場合は0から31までの整数を表現できます。

この関係性を理解することは、データ型やメモリ管理において重要です。
例えば、データベースで整数を格納する場合、適切なビット数を選択することが、データの範囲を正確に表現し、メモリ使用効率を向上させるために重要です。

バイナリと他の数値システムとの関係

コンピューターは、バイナリ以外の数値システムも使用します。以下は、よく使われるものです。

1. 8進数(オクタル)

基数が8で、0から7の数字を使います。バイナリを3桁ずつグループ化して変換できます。

2. 16進数(ヘキサデシマル)

基数が16で、0から9の数字とAからFのアルファベットを使います。バイナリを4桁ずつグループ化して変換できます。

バイナリの応用

バイナリ表現は、コンピューターにおいて多くのデータ形式やプロセスで使用されます。例えば:

1. データの保存と転送

テキスト、画像、音声などのデータは、バイナリ形式で保存・転送されます。

2. 論理演算

コンピューターは、ビット演算(AND、OR、NOT、XORなど)を使用して論理演算を行います。

3. エンコーディング

文字や記号は、ASCIIやUnicodeといったエンコーディング規格を使用してバイナリで表現されます。

バイナリは、データの保存・転送や論理演算、文字・記号のエンコーディングなど、コンピューター科学と情報技術の基礎となる概念です。

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?