Point
- Dimension reduction with Autoencoder
- Clustering with K-means
Data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('datalab/mnist', one_hot = True)
Sample Code 1 (Autoencoder)
class Autoencoder():
def __init__(self):
pass
def weight_variable(self, name, shape):
initializer = tf.truncated_normal_initializer(mean = 0.0, stddev = 0.01, dtype = tf.float32)
return tf.get_variable(name, shape, initializer = initializer)
def bias_variable(self, name, shape):
initializer = tf.constant_initializer(value = 0.0, dtype = tf.float32)
return tf.get_variable(name, shape, initializer = initializer)
def beta_variable(self, name, shape):
initializer = tf.constant_initializer(value = 0.0, dtype = tf.float32)
return tf.get_variable(name, shape, initializer = initializer)
def gamma_variable(self, name, shape):
initializer = tf.constant_initializer(value = 1.0, dtype = tf.float32)
return tf.get_variable(name, shape, initializer = initializer)
def inference(self, x, n_in, n_units_1, n_units_2):
with tf.variable_scope('enc_dec'):
w_1 = self.weight_variable('w_1', [n_in, n_units_1])
b_1 = self.bias_variable('b_1', [n_units_1])
h_1 = tf.add(tf.matmul(x, w_1), b_1)
# batch normalization
beta_1 = self.beta_variable('beta_1', [n_units_1])
gamma_1 = self.gamma_variable('gamma_1', [n_units_1])
mean_1, var_1 = tf.nn.moments(h_1, [0])
h_1 = gamma_1 * (h_1 - mean_1) / tf.sqrt(var_1 + 1e-5) + beta_1
bn_1 = tf.nn.sigmoid(h_1)
w_2 = self.weight_variable('w_2', [n_units_1, n_units_2])
b_2 = self.bias_variable('b_2', [n_units_2])
code = tf.nn.sigmoid(tf.add(tf.matmul(bn_1, w_2), b_2))
w_3 = tf.transpose(w_2)
b_3 = self.bias_variable('b_3', [n_units_1])
h_3 = tf.add(tf.matmul(code, w_3), b_3)
# batch normalization
beta_2 = self.beta_variable('beta_2', [n_units_1])
gamma_2 = self.gamma_variable('gamma_2', [n_units_1])
mean_2, var_2 = tf.nn.moments(h_3, [0])
h_3 = gamma_2 * (h_3 - mean_2) / tf.sqrt(var_2 + 1e-5) + beta_2
bn_2 = tf.nn.sigmoid(h_3)
w_4 = tf.transpose(w_1)
b_4 = self.bias_variable('b_4', [n_in])
return tf.nn.sigmoid(tf.add(tf.matmul(bn_2, w_4), b_4))
def loss(self, y, t):
return - tf.reduce_mean(tf.reduce_sum(t * tf.log(tf.clip_by_value(y, 1e-10, 1.0)) + \
(1 - t) * tf.log(tf.clip_by_value(1 - y, 1e-10, 1.0)), axis = 1))
#return tf.reduce_mean(tf.square(t - y))
def training(self, loss, learning_rate):
optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate)
train_step = optimizer.minimize(loss)
return train_step
def training_clipped(self, loss, learning_rate, clip_norm):
optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate)
grads_and_vars = optimizer.compute_gradients(loss)
clipped_grads_and_vars = [(tf.clip_by_norm(grad, clip_norm = clip_norm), \
var) for grad, var in grads_and_vars]
train_step = optimizer.apply_gradients(clipped_grads_and_vars)
return train_step
def fit(self, images_train, labels_train, images_test, labels_test, \
n_in, n_units_1, n_units_2, \
learning_rate, n_iter, batch_size, show_step, is_saving, model_path):
tf.reset_default_graph()
x = tf.placeholder(shape = [None, 28*28], dtype = tf.float32)
y = self.inference(x, n_in, n_units_1, n_units_2)
loss = self.loss(y, x)
train_step = self.training(loss, learning_rate)
init = tf.global_variables_initializer()
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(init)
history_loss_train = []
history_loss_test = []
for i in range(n_iter):
# Train
rand_index = np.random.choice(len(images_train), size = batch_size)
x_batch = images_train[rand_index]
feed_dict = {x: x_batch}
sess.run(train_step, feed_dict = feed_dict)
temp_loss = sess.run(loss, feed_dict = feed_dict)
history_loss_train.append(temp_loss)
if (i + 1) % show_step == 0:
print ('--------------------')
print ('Iteration: ' + str(i + 1) + ' Loss: ' + str(temp_loss))
# Test
rand_index = np.random.choice(len(images_test), size = batch_size)
x_batch = images_test[rand_index]
feed_dict = {x: x_batch}
temp_loss = sess.run(loss, feed_dict = feed_dict)
history_loss_test.append(temp_loss)
if is_saving:
model_path = saver.save(sess, model_path)
print ('--------------------')
print ('done saving at ', model_path)
fig = plt.figure(figsize = (10, 3))
ax1 = fig.add_subplot(1, 2, 1)
ax1.plot(range(n_iter), history_loss_train, 'b-', label = 'Train')
ax1.plot(range(n_iter), history_loss_test, 'r--', label = 'Test')
ax1.set_title('Loss')
ax1.legend(loc = 'upper right')
plt.show()
def reconstruct_image(self, x, n_in, n_units_1, n_units_2, model_path):
with tf.variable_scope('enc_dec', reuse = True):
w_1 = self.weight_variable('w_1', [n_in, n_units_1])
b_1 = self.bias_variable('b_1', [n_units_1])
h_1 = tf.add(tf.matmul(x, w_1), b_1)
beta_1 = self.beta_variable('beta_1', [n_units_1])
gamma_1 = self.gamma_variable('gamma_1', [n_units_1])
mean_1, var_1 = tf.nn.moments(h_1, [0])
h_1 = gamma_1 * (h_1 - mean_1) / tf.sqrt(var_1 + 1e-5) + beta_1
bn_1 = tf.nn.sigmoid(h_1)
w_2 = self.weight_variable('w_2', [n_units_1, n_units_2])
b_2 = self.bias_variable('b_2', [n_units_2])
code = tf.nn.sigmoid(tf.add(tf.matmul(bn_1, w_2), b_2))
w_3 = tf.transpose(w_2)
b_3 = self.bias_variable('b_3', [n_units_1])
h_3 = tf.add(tf.matmul(code, w_3), b_3)
beta_2 = self.beta_variable('beta_2', [n_units_1])
gamma_2 = self.gamma_variable('gamma_2', [n_units_1])
mean_2, var_2 = tf.nn.moments(h_3, [0])
h_3 = gamma_2 * (h_3 - mean_2) / tf.sqrt(var_2 + 1e-5) + beta_2
bn_2 = tf.nn.sigmoid(h_3)
w_4 = tf.transpose(w_1)
b_4 = self.bias_variable('b_4', [n_in])
y = tf.nn.sigmoid(tf.add(tf.matmul(bn_2, w_4), b_4))
saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess, model_path)
return sess.run(y)
def generate_code(self, x, n_in, n_units_1, n_units_2, model_path):
with tf.variable_scope('enc_dec', reuse = True):
w_1 = self.weight_variable('w_1', [n_in, n_units_1])
b_1 = self.bias_variable('b_1', [n_units_1])
h_1 = tf.add(tf.matmul(x, w_1), b_1)
beta_1 = self.beta_variable('beta_1', [n_units_1])
gamma_1 = self.gamma_variable('gamma_1', [n_units_1])
mean_1, var_1 = tf.nn.moments(h_1, [0])
h_1 = gamma_1 * (h_1 - mean_1) / tf.sqrt(var_1 + 1e-5) + beta_1
bn_1 = tf.nn.sigmoid(h_1)
w_2 = self.weight_variable('w_2', [n_units_1, n_units_2])
b_2 = self.bias_variable('b_2', [n_units_2])
code = tf.nn.sigmoid(tf.add(tf.matmul(bn_1, w_2), b_2))
saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess, model_path)
return sess.run(code)
ae = Autoencoder()
n_in = 28*28
n_units_1 = 256
n_units_2 = 128
learning_rate = 0.01
n_iter = 1000
batch_size = 100
show_step = 200
model_path = 'datalab/model'
images_train = mnist.train.images
labels_train = mnist.train.labels
images_test = mnist.test.images
labels_test = mnist.test.labels
is_saving = True
ae.fit(images_train, labels_train, images_test, labels_test, \
n_in, n_units_1, n_units_2, \
learning_rate, n_iter, batch_size, show_step, is_saving, model_path)
sample_size = 3
index = np.random.choice(10000, sample_size)
x = images_test[index]
labels = np.argmax(labels_test[index], axis = 1)
reconstructed = ae.reconstruct_image(x, n_in, n_units_1, n_units_2, model_path)
print (np.shape(x))
print (np.shape(reconstructed))
fig = plt.figure(figsize = (5, 3))
ax1 = fig.add_subplot(2, 2, 1)
ax1.imshow(np.reshape(x[0], [28, 28]), cmap = 'gray')
ax1.set_axis_off()
ax1.set_title('Input')
ax2 = fig.add_subplot(2, 2, 2)
ax2.imshow(np.reshape(reconstructed[0], [28, 28]), cmap = 'gray')
ax2.set_axis_off()
ax2.set_title('Reconstructed')
ax3 = fig.add_subplot(2, 2, 3)
ax3.imshow(np.reshape(x[1], [28, 28]), cmap = 'gray')
ax3.set_axis_off()
ax3.set_title('Input')
ax4 = fig.add_subplot(2, 2, 4)
ax4.imshow(np.reshape(reconstructed[1], [28, 28]), cmap = 'gray')
ax4.set_axis_off()
ax4.set_title('Reconstructed')
plt.show()
sample_size = 1000
index = np.random.choice(10000, sample_size)
x_train = images_train[index]
y_train = labels_train[index]
y_train_idx = np.argmax(y_train, axis = 1)
x_test = images_test[index]
y_test = labels_test[index]
y_test_idx = np.argmax(y_test, axis = 1)
codes_train = ae.generate_code(x_train, n_in, n_units_1, n_units_2, model_path)
codes_test = ae.generate_code(x_test, n_in, n_units_1, n_units_2, model_path)
Sample Code 2 (K-means)
class k_means():
def __init__(self):
pass
def inference(self, x, n_clusters):
r_seed = np.random.randint(100)
graph = tf.contrib.factorization.KMeans(x, num_clusters = n_clusters, \
random_seed = r_seed)
return graph.training_graph()
def predict(self):
pass
def accuracy(self, cluster_idx, labels, lookup_table):
y = tf.nn.embedding_lookup(lookup_table, cluster_idx)
correct_preds = tf.equal(tf.squeeze(y), tf.argmax(labels, axis = 1))
accuracy = tf.reduce_mean(tf.cast(correct_preds, tf.float32))
return accuracy
def fit(self, input_train, labels_train, input_test, labels_test, \
dim, n_clusters, n_classes, n_iter, show_step):
tf.reset_default_graph()
x = tf.placeholder(shape = [None, dim], dtype = tf.float32)
t = tf.placeholder(shape = [None, n_classes], dtype = tf.int32)
feed_dict_train = {x: input_train, t: labels_train}
feed_dict_test = {x: input_test, t: labels_test}
all_scores, cluster_idx, scores, cluster_centers_initialized, init_op, training_op = self.inference(x, n_clusters)
average_score = tf.reduce_mean(scores)
init_var = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init_var)
sess.run(init_op, feed_dict = feed_dict_train)
for i in range(n_iter):
sess.run(training_op, feed_dict = feed_dict_train)
if (i + 1) % show_step == 0:
average_score_train = sess.run(average_score, feed_dict = feed_dict_train)
average_score_test = sess.run(average_score, feed_dict = feed_dict_test)
cluster_idx_train = sess.run(cluster_idx, feed_dict = feed_dict_train)
cluster_idx_test = sess.run(cluster_idx, feed_dict = feed_dict_test)
count = np.zeros(shape = [n_clusters, n_classes], dtype = np.int32)
for j in range(len(labels_train)):
count[cluster_idx_train[0][j]] += labels_train[j]
lookup_table = np.reshape(np.argmax(count, axis = 1), [-1, 1])
accuracy_train = sess.run(self.accuracy(cluster_idx_train[0], labels_train, lookup_table))
accuracy_test = sess.run(self.accuracy(cluster_idx_test[0], labels_test, lookup_table))
print ('--------------------')
print (' Iteration: ' + str(i + 1))
print (' Average score (train): {:.5f} Average score (test): {:.5f}' \
.format(average_score_train, average_score_test))
print (' Accuracy (train): {:.3f} Accuracy (test): {:.3f}' \
.format(accuracy_train, accuracy_test))
fig = plt.figure(figsize = (8, 3))
ax = fig.add_subplot(1, 2, 1)
ax.scatter(input_train[:, 0], input_train[:, 1], c = cluster_idx_train[0], cmap = 'RdYlBu') # Accent, RdYlBu
ax.set_xlim(0.0, 1.0)
ax.set_ylim(0.0, 1.0)
ax.set_title('Train')
ax = fig.add_subplot(1, 2, 2)
ax.scatter(input_test[:, 0], input_test[:, 1], c = cluster_idx_test[0], cmap = 'RdYlBu') # Accent, RdYlBu
ax.set_xlim(0.0, 1.0)
ax.set_ylim(0.0, 1.0)
ax.set_title('Test')
plt.show()
kmeans = k_means()
input_train_km = codes_train
labels_train_km = y_train.astype(np.int32)
input_test_km = codes_test
labels_test_km = y_test.astype(np.int32)
dim = 128
n_clusters = 20
n_classes = 10
n_iter = 50
show_step = 10
kmeans.fit(input_train_km, labels_train_km, input_test_km, labels_test_km, \
dim, n_clusters, n_classes, n_iter, show_step)