0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

Graph Laplacian Matrix の実装に関するメモ

Posted at

Points

  • Graph Laplacian matrix を実装し、具体的な数値例で確認。

Reference

1. A Tutorial on Spectral Clustering

Data

def create_data(n_input, dim, n_classes):

  n_input_per_class = n_input // n_classes

  x_1 = np.random.normal(loc = [7.0, 7.0], scale = [0.5, 0.5], size = [n_input_per_class, dim])
  x_2 = np.random.normal(loc = [5.0, 1.0], scale = [0.5, 0.5], size = [n_input_per_class, dim])
  x_3 = np.random.normal(loc = [2.0, 4.0], scale = [0.5, 0.5], size = [n_input_per_class, dim])

  x = np.concatenate([x_1, x_2, x_3], axis = 0).astype(np.float32)

  y_1 = np.array([0] * (n_input_per_class))
  y_2 = np.array([1] * (n_input_per_class))
  y_3 = np.array([2] * (n_input_per_class))

  y = np.concatenate([y_1, y_2, y_3]).astype(np.int32)
  y_one_hot = np.identity(n_classes)[y].astype(np.int32)
  
  return x, y, y_one_hot

  
n_input = 9
dim = 2
n_classes = 3

x, y, y_one_hot = create_data(n_input, dim, n_classes)

fig = plt.figure(figsize = (8, 3))

ax = fig.add_subplot(1, 2, 1)
ax.scatter(x[:, 0], x[:, 1], c = y, cmap = 'Accent')  # Accent
ax.set_xlim(-3.0, 12.0)
ax.set_ylim(-3.0, 12.0)
ax.set_title('Scatter graph of sample')

plt.show()

image.png

Sample Code

x_input = tf.expand_dims(x, 1)
M = tf.tile(x_input, [1, n_input, 1])
M_T = tf.transpose(M, [1, 0, 2])

# Gaussian similarity
sig = 1.0
W = tf.reduce_sum(tf.square(M - M_T), axis = -1)
W = tf.exp(-0.5 * W / sig**2)

# unnormalized Laplacian
diag = tf.reduce_sum(W, axis = -1)
D = tf.matrix_diag(diagonal = diag)
L = D - W 
e, v = tf.self_adjoint_eig(L)

# normalized Laplacian
D_I = tf.matrix_diag(diagonal = 1.0 / diag)
L_rw = tf.matmul(D_I, L)
e_rw, v_rw = tf.self_adjoint_eig(L_rw)

with tf.Session() as sess:
  e = sess.run(e)
  v = sess.run(v)
  e_rw = sess.run(e_rw)
  v_rw = sess.run(v_rw)


print ('Eigenvalues (unnormalized)')  
print (e)
    
plt.plot(v[:, 0], label = 'eigenvector 1')
plt.plot(v[:, 1], label = 'eigenvector 2')
plt.plot(v[:, 2], label = 'eigenvector 3')
plt.plot(v[:, 3], label = 'eigenvector 4')
plt.title('Eigenvectors (unnormalized)')
plt.legend(loc = 'upper right')

plt.show()

print ('-' * 30)
print ('Eigenvalues (normalized)')  
print (e_rw)
    
plt.plot(v_rw[:, 0], label = 'eigenvector 1')
plt.plot(v_rw[:, 1], label = 'eigenvector 2')
plt.plot(v_rw[:, 2], label = 'eigenvector 3')
plt.plot(v_rw[:, 3], label = 'eigenvector 4')
plt.title('Eigenvectors (normalized)')
plt.legend(loc = 'upper right')

image.png

image.png

0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?