1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

LSTM x Weight Normalization の実装に関するメモ

Last updated at Posted at 2018-05-30

##ポイント

  • LSTMをベースに Weight Normalization を実装。MNIST 手書き数字データでパフォーマンスを検証。
  • Weight Normalization の効果を確認。
  • Gradient Clipping の効果は今後、再検証。

##レファレンス
1. Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks

##検証方法

  • MNIST手書き数字データを使用。一層目の LSTM に Weight Normalization を適用。

  • Base model( Normalization なし)と比較。

  • Weight Normalization

y = \phi(w \cdot x + b) \\
w = \frac{g}{||v||}v \\

         

##データ
MNIST handwritten digits

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('***/mnist', \
                                     one_hot = True)

##検証結果
数値計算例:

  • n_units = 100
  • learning_rate = 0.1
  • batch_size = 64

Base
image.png

Weight Normalization ( no gradient clipping )
image.png

Weight Normalization ( clipped-by-norm, 0.5 )
image.png
< br>

##サンプルコード

  # Weight Normalization
  def inference(self, x, length, n_in, n_units, n_out, \
                   batch_size, forget_bias):
    
    x = tf.reshape(x, [-1, length, n_in])

    h = tf.zeros(shape = [batch_size, n_units], \
                   dtype = tf.float32)
    c = tf.zeros(shape = [batch_size, n_units], \
                   dtype = tf.float32)
    
    list_h = []
    list_c = []
    
    with tf.variable_scope('lstm'):
      init_norm = tf.truncated_normal_initializer(mean = \
                   0.0, stddev = 0.05, dtype = tf.float32)
      init_constant1 = tf.constant_initializer(value = \
                   0.0, dtype = tf.float32)
      init_constant2 = tf.constant_initializer(value = \
                   0.1, dtype = tf.float32)
      
      v_x = tf.get_variable('w_x', shape = [n_in, n_units \
                   * 4], initializer = init_norm)
      g_x = tf.get_variable('g_x', shape = [n_units * 4], \
                   initializer = init_constant2)
      v_h = tf.get_variable('w_h', shape = [n_units, \
                   n_units * 4], initializer = init_norm)
      g_h = tf.get_variable('g_h', shape = [n_units * 4], \
                           initializer = init_constant2)
      b = tf.get_variable('b', shape = [n_units * 4], \
                   initializer = init_constant1)
      
      for t in range(length):
 
        v_norm_x = tf.nn.l2_normalize(v_x, axis = [0])
        w_x = g_x * v_norm_x
        t_x = tf.matmul(x[:, t, :], w_x)

        v_norm_h = tf.nn.l2_normalize(v_h, axis = [0])
        w_h = g_h * v_norm_h
        t_h = tf.matmul(h, w_h)
      
        i, f, o, g = tf.split(tf.add(tf.add(t_x, t_h), b), \
                         4, axis = 1)

        i = tf.nn.sigmoid(i)
        f = tf.nn.sigmoid(f + forget_bias)
        o = tf.nn.sigmoid(o)
        g = tf.nn.tanh(g)

        c = tf.add(tf.multiply(f, c), tf.multiply(i, g))
        h = tf.multiply(o, tf.nn.tanh(c))
        
        list_h.append(h)
        list_c.append(c)
        
    with tf.variable_scope('pred'):
      w = self.weight_variable('w', [n_units, n_out])
      b = self.bias_variable('b', [n_out])

      y = tf.add(tf.matmul(list_h[-1], w), b)
      y = tf.nn.softmax(y, axis = 1)
      
      return y

  def training(self, loss, learning_rate, clip_norm):
    optimizer = tf.train.AdamOptimizer(learning_rate = \
                   learning_rate)

    grads_and_vars = optimizer.compute_gradients(loss)
    clipped_grads_and_vars = [(tf.clip_by_norm(grad, \
           clip_norm = clip_norm), var) for grad, \
           var in grads_and_vars]
    train_step = \
        optimizer.apply_gradients(clipped_grads_and_vars)
    
    return train_step
1
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?